Genomics for monitoring and understanding species responses to global climate change

Smith, T. B. & Bernatchez, L. Evolutionary change in human-altered environments. Mol. Ecol. 17, 1–8 (2008).

Article  PubMed  Google Scholar 

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

Article  PubMed  Google Scholar 

Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18 (2020). A road map of how science and society can work together to facilitate sampling, estimating of fitness parameters and genome sequencing for a broad range of species to implement mitigation measures to face GCC.

Article  PubMed  PubMed Central  Google Scholar 

Lancaster, L. T. et al. Understanding climate change response in the age of genomics. J. Anim. Ecol. 91, 1056–1063 (2022). Special issue highlighting how emerging genomic approaches are used to understand population responses to GCC across a diverse range of animal systems.

Article  PubMed  Google Scholar 

Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Phil. Trans. R. Soc. B 367, 1665–1679 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Klein, S. G. et al. Projecting coral responses to intensifying marine heatwaves under ocean acidification. Glob. Change Biol. 28, 1753–1765 (2022).

Article  CAS  Google Scholar 

Sandoval-Castillo, J. et al. Adaptation of plasticity to projected maximum temperatures and across climatically defined bioregions. Proc. Natl Acad. Sci. USA 117, 17112–17121 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eisenhauer, N. et al. The dark side of animal phenology. Trends Ecol. Evol. 33, 898–901 (2018).

Article  PubMed  Google Scholar 

Miller-Rushing, A. J. & Primack, R. B. Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology 89, 332–341 (2008).

Article  PubMed  Google Scholar 

Bruno, J. F. et al. Thermal stress and coral cover as drivers of coral disease outbreaks. PLOS Biol. 5, e124 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).

Article  PubMed  Google Scholar 

Parmesan, C. & Singer, M. C. Mosaics of climatic stress across species’ ranges: tradeoffs cause adaptive evolution to limits of climatic tolerance. Phil. Trans. R. Soc. B 377, 20210003 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

Article  CAS  PubMed  Google Scholar 

Carroll, S. P. et al. Applying evolutionary biology to address global challenges. Science 346, 1245993 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Phil. Trans. R. Soc. B 374, 20180186 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Hansen, M. M., Olivieri, I., Waller, D. M., Nielsen, E. E. & Group, T. G. W. Monitoring adaptive genetic responses to environmental change. Mol. Ecol. 21, 1311–1329 (2012).

Article  PubMed  Google Scholar 

Verhoeven, K. J. F., vonHoldt, B. M. & Sork, V. L. Epigenetics in ecology and evolution: what we know and what we need to know. Mol. Ecol. 25, 1631–1638 (2016).

Article  PubMed  Google Scholar 

Everett, L. J. et al. Gene expression networks in the Drosophila genetic reference panel. Genome Res. 30, 485–496 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, Y. & Bergland, A. O. Distinct signals of clinal and seasonal allele frequency change at eQTLs in Drosophila melanogaster. Evol 76, 2758–2768 (2022).

Article  CAS  Google Scholar 

Stange, M., Barrett, R. D. H. & Hendry, A. P. The importance of genomic variation for biodiversity, ecosystems and people. Nat. Rev. Genet. 22, 89–105 (2021).

Article  CAS  PubMed  Google Scholar 

McGaughran, A., Laver, R. & Fraser, C. Evolutionary responses to warming. Trends Ecol. Evol. 36, 591–600 (2021).

Article  PubMed  Google Scholar 

Springer, N. M. & Schmitz, R. J. Exploiting induced and natural epigenetic variation for crop improvement. Nat. Rev. Genet. 18, 563–575 (2017).

Article  CAS  PubMed  Google Scholar 

Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Coster, W., Weissensteiner, M. H. & Sedlazeck, F. J. Towards population-scale long-read sequencing. Nat. Rev. Genet. 22, 572–587 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Thomas, L. et al. Spatially varying selection between habitats drives physiological shifts and local adaptation in a broadcast spawning coral on a remote atoll in Western Australia. Sci. Adv. 8, eabl9185 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoban, S. et al. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am. Nat. 188, 379–397 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Boulanger, E. et al. Climate differently influences the genomic patterns of two sympatric marine fish species. J. Anim. Ecol. 91, 1180–1195 (2022).

Article  PubMed  Google Scholar 

Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24, 4348–4370 (2015).

Article  PubMed  Google Scholar 

Lasky, J. R., Josephs, E. B. & Morris, G. P. Genotype–environment associations to reveal the molecular basis of environmental adaptation. Plant Cell 35, 125–138 (2023).

Article  PubMed  Google Scholar 

Alvarado, A. H. et al. Genotype–environment associations across spatial scales reveal the importance of putative adaptive genetic variation in divergence. Evol. Appl. 15, 1390–1407 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nielsen, E. S., Henriques, R., Beger, M., Toonen, R. J. & Von der Heyden, S. Multi-model seascape genomics identifies distinct environmental drivers of selection among sympatric marine species. BMC Evol. Biol. 20, 1–17 (2020).

Article  Google Scholar 

Brauer, C. J., Unmack, P. J., Smith, S., Bernatchez, L. & Beheregaray, L. B. On the roles of landscape heterogeneity and environmental variation in determining population genomic structure in a dendritic system. Mol. Ecol. 27, 3484–3497 (2018).

Article  CAS  PubMed  Google Scholar 

Grummer, J. A. et al. Aquatic landscape genomics and environmental effects on genetic variation. Trends Ecol. Evol. 34, 641–654 (2019).

Article  PubMed  Google Scholar 

Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24, 1031–1046 (2015).

Article  PubMed  Google Scholar 

Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol. Ecol. 27, 2215–2233 (2018).

Article  CAS  PubMed  Google Scholar 

Capblancq, T., Luu, K., Blum, M. G. & Bazin, E. Evaluation of redundancy analysis to identify signatures of local adaptation. Mol. Ecol. Resour. 18, 1223–1233 (2018).

Article  CAS  PubMed  Google Scholar 

Martínez-Berdeja, A. et al. Functional variants of DOG1 control seed chilling responses and variation in seasonal life-history strategies in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 117, 2526–2534 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Fournier‐Level, A. et al. Adaptive significance of flowering time variation across natural seasonal environments in Arabidopsis thaliana. N. Phytol. 234

Comments (0)

No login
gif