Wilusz, C. J., Wormington, M. & Peltz, S. W. The cap-to-tail guide to mRNA turnover. Nat. Rev. Mol. Cell Biol. 2, 237–246 (2001).
Article CAS PubMed Google Scholar
Garneau, N. L., Wilusz, J. & Wilusz, C. J. The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. 8, 113–126 (2007).
Article CAS PubMed Google Scholar
Schoenberg, D. R. & Maquat, L. E. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 13, 246–259 (2012).
Article CAS PubMed PubMed Central Google Scholar
Wolin, S. L. & Maquat, L. E. Cellular RNA surveillance in health and disease. Science 366, 822–827 (2019).
Article CAS PubMed PubMed Central Google Scholar
Monaghan, L., Longman, D. & Cáceres, J. F. Translation-coupled mRNA quality control mechanisms. EMBO J. 42, e114378 (2023).
Article CAS PubMed PubMed Central Google Scholar
Vastenhouw, N. L., Cao, W. X. & Lipshitz, H. D. The maternal-to-zygotic transition revisited. Development 146, dev161471 (2019).
Article CAS PubMed Google Scholar
Pavanello, L., Hall, M. & Winkler, G. S. Regulation of eukaryotic mRNA deadenylation and degradation by the Ccr4-Not complex. Front. Cell Dev. Biol. 11, 1153624 (2023).
Article PubMed PubMed Central Google Scholar
Shehata, S. I., Watkins, J. M., Burke, J. M. & Parker, R. Mechanisms and consequences of mRNA destabilization during viral infections. Virol. J. 21, 38 (2024).
Article CAS PubMed PubMed Central Google Scholar
Fu, M. & Blackshear, P. J. RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat. Rev. Immunol. 17, 130–143 (2017).
Article CAS PubMed Google Scholar
Yang, G., Xin, Q. & Dean, J. Degradation and translation of maternal mRNA for embryogenesis. Trends Genet. 40, 238–249 (2024).
Article CAS PubMed Google Scholar
Abernathy, E. & Glaunsinger, B. Emerging roles for RNA degradation in viral replication and antiviral defense. Virology 479–480, 600–608 (2015).
Rambout, X. & Maquat, L. E. Nuclear mRNA decay: regulatory networks that control gene expression. Nat. Rev. Genet. 25, 679–697 (2024).
CAS PubMed PubMed Central Google Scholar
Garland, W. & Jensen, T. H. Nuclear sorting of short RNA polymerase II transcripts. Mol. Cell 84, 3644–3655 (2024).
Article CAS PubMed Google Scholar
Mangus, D. A., Evans, M. C. & Jacobson, A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol. 4, 223 (2003).
Article PubMed PubMed Central Google Scholar
Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).
Article CAS PubMed PubMed Central Google Scholar
Decker, C. J. & Parker, R. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7, 1632–1643 (1993).
Article CAS PubMed Google Scholar
Cao, D. & Parker, R. Computational modeling of eukaryotic mRNA turnover. RNA 7, 1192 (2001).
Article CAS PubMed PubMed Central Google Scholar
Eisen, T. J. et al. The dynamics of cytoplasmic mRNA metabolism. Mol. Cell 77, 786–799.e10 (2020). Eisen et al. report conduction of large-scale characterization of deadenylation and degradation dynamics of mRNAs confirming at a global level that deadenylation rates broadly dictate mRNA degradation rates.
Article CAS PubMed PubMed Central Google Scholar
Boeck, R. et al. The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity. J. Biol. Chem. 271, 432–438 (1996).
Article CAS PubMed Google Scholar
Brown, C. E., Tarun, S. Z., Boeck, R. & Sachs, A. B. PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 5744–5753 (1996).
Article CAS PubMed PubMed Central Google Scholar
Tucker, M. et al. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377–386 (2001).
Article CAS PubMed Google Scholar
Jonas, S. et al. An asymmetric PAN3 dimer recruits a single PAN2 exonuclease to mediate mRNA deadenylation and decay. Nat. Struct. Mol. Biol. 21, 599–608 (2014).
Article CAS PubMed Google Scholar
Wolf, J. et al. Structural basis for Pan3 binding to Pan2 and its function in mRNA recruitment and deadenylation. EMBO J. 33, 1514–1526 (2014).
Article CAS PubMed PubMed Central Google Scholar
Tang, T. T. L., Stowell, J. A. W., Hill, C. H. & Passmore, L. A. The intrinsic structure of poly(A) RNA determines the specificity of Pan2 and Caf1 deadenylases. Nat. Struct. Mol. Biol. 26, 433–442 (2019). Tang et al. present evidence that Pan2 and Caf1 deadenylases do not form base-specific contacts with the poly(A) tail, but instead recognize the intrinsic stacked helical structure formed by the poly(A) tail, which, when disrupted, inhibits deadenylation.
Article CAS PubMed PubMed Central Google Scholar
Uchida, N., Hoshino, S.-I. & Katada, T. Identification of a human cytoplasmic poly(A) nuclease complex stimulated by poly(A)-binding protein. J. Biol. Chem. 279, 1383–1391 (2004).
Article CAS PubMed Google Scholar
Yi, H. et al. PABP cooperates with the CCR4-NOT complex to promote mRNA deadenylation and block precocious decay. Mol. Cell 70, 1081–1088.e5 (2018). The authors investigate the different contributions of human PAN2–PAN3 and the CCR4–NOT complexes to mRNA degradation and present evidence that the two catalytic subunits of the CCR4–NOT complex, CAF1 and CCR4, have distinct specificities for free and PABPC-bound poly(A), respectively.
Article CAS PubMed Google Scholar
Yamashita, A. et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat. Struct. Mol. Biol. 12, 1054–1063 (2005).
Article CAS PubMed Google Scholar
Schäfer, I. B. et al. Molecular basis for poly(A) RNP architecture and recognition by the pan2-pan3 deadenylase. Cell 177, 1619–1631.e21 (2019). Schäfer et al. demonstrate the crucial role for Pab1 in creating a unique poly(A)–RNP architecture and how the Pan2–Pan3 deadenylase complex specifically binds to Pab1 dimers, providing a rationale for how Pan2–Pan3 specifically trims long poly(A) tails.
Article PubMed PubMed Central Google Scholar
Baer, B. W. & Kornberg, R. D. The protein responsible for the repeating structure of cytoplasmic poly(A)-ribonucleoprotein. J. Cell Biol. 96, 717–721 (1983).
Article CAS PubMed Google Scholar
Smith, B. L., Gallie, D. R., Le, H. & Hansma, P. K. Visualization of poly(A)-binding protein complex formation with poly(A) RNA using atomic force microscopy. J. Struct. Biol. 119, 109–117 (1997).
Article CAS PubMed Google Scholar
Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. & Bartel, D. P. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66–71 (2014).
Comments (0)