Cytoplasmic mRNA decay and quality control machineries in eukaryotes

Wilusz, C. J., Wormington, M. & Peltz, S. W. The cap-to-tail guide to mRNA turnover. Nat. Rev. Mol. Cell Biol. 2, 237–246 (2001).

Article  CAS  PubMed  Google Scholar 

Garneau, N. L., Wilusz, J. & Wilusz, C. J. The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. 8, 113–126 (2007).

Article  CAS  PubMed  Google Scholar 

Schoenberg, D. R. & Maquat, L. E. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 13, 246–259 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolin, S. L. & Maquat, L. E. Cellular RNA surveillance in health and disease. Science 366, 822–827 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monaghan, L., Longman, D. & Cáceres, J. F. Translation-coupled mRNA quality control mechanisms. EMBO J. 42, e114378 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vastenhouw, N. L., Cao, W. X. & Lipshitz, H. D. The maternal-to-zygotic transition revisited. Development 146, dev161471 (2019).

Article  CAS  PubMed  Google Scholar 

Pavanello, L., Hall, M. & Winkler, G. S. Regulation of eukaryotic mRNA deadenylation and degradation by the Ccr4-Not complex. Front. Cell Dev. Biol. 11, 1153624 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Shehata, S. I., Watkins, J. M., Burke, J. M. & Parker, R. Mechanisms and consequences of mRNA destabilization during viral infections. Virol. J. 21, 38 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu, M. & Blackshear, P. J. RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat. Rev. Immunol. 17, 130–143 (2017).

Article  CAS  PubMed  Google Scholar 

Yang, G., Xin, Q. & Dean, J. Degradation and translation of maternal mRNA for embryogenesis. Trends Genet. 40, 238–249 (2024).

Article  CAS  PubMed  Google Scholar 

Abernathy, E. & Glaunsinger, B. Emerging roles for RNA degradation in viral replication and antiviral defense. Virology 479–480, 600–608 (2015).

Article  PubMed  Google Scholar 

Rambout, X. & Maquat, L. E. Nuclear mRNA decay: regulatory networks that control gene expression. Nat. Rev. Genet. 25, 679–697 (2024).

CAS  PubMed  PubMed Central  Google Scholar 

Garland, W. & Jensen, T. H. Nuclear sorting of short RNA polymerase II transcripts. Mol. Cell 84, 3644–3655 (2024).

Article  CAS  PubMed  Google Scholar 

Mangus, D. A., Evans, M. C. & Jacobson, A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol. 4, 223 (2003).

Article  PubMed  PubMed Central  Google Scholar 

Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Decker, C. J. & Parker, R. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7, 1632–1643 (1993).

Article  CAS  PubMed  Google Scholar 

Cao, D. & Parker, R. Computational modeling of eukaryotic mRNA turnover. RNA 7, 1192 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eisen, T. J. et al. The dynamics of cytoplasmic mRNA metabolism. Mol. Cell 77, 786–799.e10 (2020). Eisen et al. report conduction of large-scale characterization of deadenylation and degradation dynamics of mRNAs confirming at a global level that deadenylation rates broadly dictate mRNA degradation rates.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boeck, R. et al. The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity. J. Biol. Chem. 271, 432–438 (1996).

Article  CAS  PubMed  Google Scholar 

Brown, C. E., Tarun, S. Z., Boeck, R. & Sachs, A. B. PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 5744–5753 (1996).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tucker, M. et al. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377–386 (2001).

Article  CAS  PubMed  Google Scholar 

Jonas, S. et al. An asymmetric PAN3 dimer recruits a single PAN2 exonuclease to mediate mRNA deadenylation and decay. Nat. Struct. Mol. Biol. 21, 599–608 (2014).

Article  CAS  PubMed  Google Scholar 

Wolf, J. et al. Structural basis for Pan3 binding to Pan2 and its function in mRNA recruitment and deadenylation. EMBO J. 33, 1514–1526 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang, T. T. L., Stowell, J. A. W., Hill, C. H. & Passmore, L. A. The intrinsic structure of poly(A) RNA determines the specificity of Pan2 and Caf1 deadenylases. Nat. Struct. Mol. Biol. 26, 433–442 (2019). Tang et al. present evidence that Pan2 and Caf1 deadenylases do not form base-specific contacts with the poly(A) tail, but instead recognize the intrinsic stacked helical structure formed by the poly(A) tail, which, when disrupted, inhibits deadenylation.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uchida, N., Hoshino, S.-I. & Katada, T. Identification of a human cytoplasmic poly(A) nuclease complex stimulated by poly(A)-binding protein. J. Biol. Chem. 279, 1383–1391 (2004).

Article  CAS  PubMed  Google Scholar 

Yi, H. et al. PABP cooperates with the CCR4-NOT complex to promote mRNA deadenylation and block precocious decay. Mol. Cell 70, 1081–1088.e5 (2018). The authors investigate the different contributions of human PAN2–PAN3 and the CCR4–NOT complexes to mRNA degradation and present evidence that the two catalytic subunits of the CCR4–NOT complex, CAF1 and CCR4, have distinct specificities for free and PABPC-bound poly(A), respectively.

Article  CAS  PubMed  Google Scholar 

Yamashita, A. et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat. Struct. Mol. Biol. 12, 1054–1063 (2005).

Article  CAS  PubMed  Google Scholar 

Schäfer, I. B. et al. Molecular basis for poly(A) RNP architecture and recognition by the pan2-pan3 deadenylase. Cell 177, 1619–1631.e21 (2019). Schäfer et al. demonstrate the crucial role for Pab1 in creating a unique poly(A)–RNP architecture and how the Pan2–Pan3 deadenylase complex specifically binds to Pab1 dimers, providing a rationale for how Pan2–Pan3 specifically trims long poly(A) tails.

Article  PubMed  PubMed Central  Google Scholar 

Baer, B. W. & Kornberg, R. D. The protein responsible for the repeating structure of cytoplasmic poly(A)-ribonucleoprotein. J. Cell Biol. 96, 717–721 (1983).

Article  CAS  PubMed  Google Scholar 

Smith, B. L., Gallie, D. R., Le, H. & Hansma, P. K. Visualization of poly(A)-binding protein complex formation with poly(A) RNA using atomic force microscopy. J. Struct. Biol. 119, 109–117 (1997).

Article  CAS  PubMed  Google Scholar 

Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. & Bartel, D. P. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66–71 (2014).

Comments (0)

No login
gif