Abramsky O, Litvin Y (1978) Automimmune response to dopamine-receptor as a possible mechanism in the pathogenesis of Parkinson’s disease and schizophrenia. Perspect Biol Med 22(1):104–114
Adithya G, Mackie PM, Phan LT, Gámez TM, Habibeh K (2023) The complex role of inflammation and gliotransmitters in Parkinson’s disease. Neurobiol Dis 176:105940
Allison S, Gruber-Baldini AL, Rainer von Coelln F, Savitt JM, Reich SG, Armstrong MJ, Shulman LM (2021) Comparison of mini-mental state examination and montreal cognitive assessment ratings across levels of parkinson’s disease severity. J Parkinsons Dis. 11(4):1995–2003
Alves G, Lange J, Blennow K, Zetterberg H, Andreasson U, Førland MG, Tysnes O-B, Larsen JP, Pedersen KF (2014) CSF Aβ42 predicts early-onset dementia in Parkinson disease. Neurology 82(20):1784–1790
Article CAS PubMed Google Scholar
Björn S (2017) Interleukin 4-induced neuroprotection and regulation of microglia activation as a therapeutic approach in the MPTP model of Parkinson’s disease. Neural Regen Res 12(9):1433–1434
Chen-Chih C, Lung C, Jia-Hung C, Adebayo BO, Hung-Wen C, Chien-Tai H (2021) Plasma extracellular vesicles tau and β-amyloid as biomarkers of cognitive dysfunction of Parkinson’s disease. FASEB J 35(10):e21895
Alexa DeMaio, Shikhar M, Kumar S, Shahid H (2022) The role of the adaptive immune system and T cell dysfunction in neurodegenerative diseases. J Neuroinflammation 19(1):251
Ewa P, Ewa K-D, Witold K, Konrad R (2015) Humoral response against small heat shock proteins in Parkinson’s disease. PLoS ONE 10(1):e0115480
Fatemeh H, Hassan A, Mehdi T, Abdolrazagh B, Massood NS, Koorosh S (2021) α-synuclein abnormalities trigger focal tau pathology, spreading to various brain areas in Parkinson disease. J Neurochem 157(3):727–751
Genevieve H, Daniel R, Amanda G, Steven D (2017) Regulation of PD-L1 expression on murine tumor-associated monocytes and macrophages by locally produced TNF-α. Cancer Immunol Immunother 66(4):523–535
Halliday GM, Leverenz JB, Schneider JS, Adler CH (2014) The neurobiological basis of cognitive impairment in Parkinson’s disease. Mov Disord 29(5):634–650
Article CAS PubMed PubMed Central Google Scholar
Hu ZX, Song WN, Lu XD, Zhou ML, Shao JH (2018) Peripheral T lymphocyte immunity and l-dopamine in patients with Parkinson’s disease. J Biol Regul Homeost Agents 32(3):687–691
Hugo G, Francisco C, Rodrigo P (2015) Regulation of the neurodegenerative process associated to Parkinson’s disease by CD4+ T-cells. J Neuroimmune Pharmacol 10(4):561–575
Jiajia Fu, Yan H, Ting B, Chengcheng L, Xi L, Xueping C (2022) The role of Th17 cells/IL-17A in AD, PD, ALS and the strategic therapy targeting on IL-17A. J Neuroinflammation 19(1):98
Jiang X, Ganesan P, Rengarajan T, Choi D-K, Arulselvan P (2018) Cellular phenotypes as inflammatory mediators in Parkinson’s disease: interventional targets and role of natural products. Biomed Pharmacother 106:1052–1062
Article CAS PubMed Google Scholar
Jinar R, Tobias M, Mahshad K, Olle E, Mohsen M, Joakim B, Martin I, Paul O, Healy LM, Anna F, Anna E (2021) Crosstalk between astrocytes and microglia results in increased degradation of α-synuclein and amyloid-β aggregates. J Neuroinflammation 18(1):124
Joseph S, Jahnavi P, Field W, Nathan S, Eric L, Albert C, Karin S, Ken W (2021) NNC 26–9100 increases Aβ1-42 phagocytosis, inhibits nitric oxide production and decreases calcium in BV2 microglia cells. PLoS ONE 16(7):e0254242
Kustrimovic N, Rasini E, Legnaro M, Bombelli R, Aleksic I, Blandini F, Comi C, Mauri M, Minafra B, Riboldazzi G, Sanchez-Guajardo V, Marino F, Cosentino M (2016) Dopaminergic receptors on CD4+ T naive and memory lymphocytes correlate with motor impairment in patients with Parkinson’s disease. Sci Rep 6:33738
Article CAS PubMed PubMed Central Google Scholar
Magistrelli L, Storelli E, Rasini E, Contaldi E, Comi C, Cosentino M, Marino F (2020) Relationship between circulating CD4+ T lymphocytes and cognitive impairment in patients with Parkinson’s disease. Brain Behav Immun. 89:668–674
Article CAS PubMed Google Scholar
McMillan CT, Wolk DA (2016) Presence of cerebral amyloid modulates phenotype and pattern of neurodegeneration in early Parkinson’s disease. J Neurol Neurosurg Psychiatry 87(10):1112–1122
Mery VP, Priti G, Anne-Louise L, Ann R, Andrea B, John KR, Marta K (2017) Reduced cognitive function in patients with Parkinson’s disease and obstructive sleep apnea. Neurology 88(12):1120–1128
Petrelli A, Kaesberg S, Barbe MT, Timmermann L, Rosen JB, Fink GR, Kessler J, Kalbe E (2015) Cognitive training in Parkinson’s disease reduces cognitive decline in the long term. Eur J Neurol 22(4):640–647
Article CAS PubMed Google Scholar
Postuma RB, Berg D, Stern M, Poewe W, Olanow CW et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30:1591–1601
Shashank S, Rahul K, Nitish R, Vijay K, Kusum S, Datt UA, Manjari T, Sadanand D, Dey AB, Sharmistha D (2016) Estimation of Tau and Phosphorylated Tau181 in Serum of Alzheimer’s disease and mild cognitive impairment patients. PLoS ONE 11(7):e0159099
Soileau MJ, Pagan FL, Alfonso F, Ramon R-C, Yan CH, Gupta NR, Teigland CL, Zulkarnain P, Schinkel JK, Kandukuri PL, Ladhani OA, Siddiqui MS (2023) Comparative effectiveness of carbidopa/levodopa enteral suspension and deep brain stimulation on pill burden reduction in medicare fee-for-service patients with advanced Parkinson’s disease. Neurol Ther. https://doi.org/10.1007/s40120-022-00433-w
Article PubMed PubMed Central Google Scholar
Sule T-U, Yesim N, Karabulut DS, Merve Z, Sevim I (2017) Cellular model of Alzheimer’s disease: Aβ1-42 peptide induces amyloid deposition and a decrease in topo isomerase IIβ and Nurr1 expression. Curr Alzheimer Res 14(6):636–644
Tomas S, Aladar M, Jana F, Ondrej K, Santosh J, Martin C, Veronika B, Michal N, Norbert Z (2016) Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment. J Comp Neurol 524(4):874–895
Walter M, Daniela B (2018) Parkinson disease in 2017: changing views after 200 years of Parkinson disease. Nat Rev Neurol 14(2):70–72
Weinshel S, IrwinDavid J, Zhang P, Weintraub D, Shaw LM, Siderowf A, Xie SX (2022) Appropriateness of applying cerebrospinal fluid biomarker cutoffs from Alzheimer’s disease to Parkinson’s disease. J Parkinsons Dis 12(4):1155–1167
Article CAS PubMed PubMed Central Google Scholar
Wenbin W, Lan C, Lumei L, Chunyan Z, Bill K, Xiantao T, Yaming Li, Shijin X (2015) Aβ(1–42) oligomer-induced leakage in an in vitro blood-brain barrier model is associated with up-regulation of RAGE and metalloproteinases, and down-regulation of tight junction scaffold proteins. J Neurochem 134(2):382–393
Williams Gregory P, Schonhoff Aubrey M, Jurkuvenaite A, Gallups Nicole J, Standaert David G, Harms Ashley S (2021) CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinson’s disease. Brain 144(7):2047–2059
Article CAS PubMed PubMed Central Google Scholar
Woo NS, Hee HY, Woong MC, Joo CE, Gyu KE, Hwan JK, Hwa SJ, Jin KS (2014) Analysis among cognitive profiles and gray matter volume in newly diagnosed Parkinson’s disease with mild cognitive impairment. J Neurol Sci 347:210–213
Yarnall AJ, Breen DP, Duncan GW, Khoo TK, Coleman SY, Firbank MJ, Cristina N, Sophie W-R, Evans JR, Rowe JB, Brit M, Niels K, Gavin H, Chinnery PF, O’Brien JT, Robbins TW, Keith W, Brooks DJ, Barker RA, Burn DJ, ICICLE-PD Study Group (2014) Characterizing mild cognitive impairment in incident Parkinson disease: the ICICLE-PD study. Neurology 82(4):308–316
Article PubMed PubMed Central Google Scholar
Zhang MY (1989) Application of Chinese version of simple intelligent state check (MMSE). Shanghai J Psychiatr. 007(3):108–111
Comments (0)