Moschini M, D’Andrea D, Korn S et al (2017) Characteristics and clinical significance of histological variants of bladder cancer. Nat Rev Urol 14(11):651–668. https://doi.org/10.1038/nrurol.2017.125
Witjes JA, Bruins HM, Cathomas R et al (2021) European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines. Eur Urol 79(1):82–104. https://doi.org/10.1016/j.eururo.2020.03.055
Article CAS PubMed Google Scholar
Flaig TW, Spiess PE, Agarwal N et al (2020) Bladder cancer, Version 3.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 18(3):329–354. https://doi.org/10.6004/jnccn.2020.0011
Powles T, Park SH, Voog E et al (2020) Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N Engl J Med 383(13):1218–1230. https://doi.org/10.1056/NEJMoa2002788
Article CAS PubMed Google Scholar
Bellmunt J, de Wit R, Vaughn DJ et al (2017) Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 376(11):1015–1026. https://doi.org/10.1056/NEJMoa1613683
Article CAS PubMed PubMed Central Google Scholar
Rowshanravan B, Halliday N, Sansom DM (2018) CTLA-4: a moving target in immunotherapy. Blood 131(1):58–67. https://doi.org/10.1182/blood-2017-06-741033
Article CAS PubMed Google Scholar
Sharma P, Siefker-Radtke A, de Braud F et al (2019) Nivolumab alone and with ipilimumab in previously treated metastatic urothelial carcinoma: checkmate 032 Nivolumab 1 mg/kg plus Ipilimumab 3 mg/kg expansion cohort results. J Clin Oncol 37(19):1608–1616. https://doi.org/10.1200/jco.19.00538
Article CAS PubMed PubMed Central Google Scholar
Apolo AB, Nadal R, Girardi DM et al (2020) Phase I study of cabozantinib and nivolumab alone or with ipilimumab for advanced or metastatic urothelial carcinoma and other genitourinary tumors. J Clin Oncol 38(31):3672–3684. https://doi.org/10.1200/jco.20.01652
Article CAS PubMed PubMed Central Google Scholar
Zhu S, Zhang T, Zheng L et al (2021) Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol 14(1):156. https://doi.org/10.1186/s13045-021-01164-5
Article PubMed PubMed Central Google Scholar
Wei J, Montalvo-Ortiz W, Yu L et al (2021) Sequence of αPD-1 relative to local tumor irradiation determines the induction of abscopal antitumor immune responses. Sci Immunol. https://doi.org/10.1126/sciimmunol.abg0117
Article PubMed PubMed Central Google Scholar
Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203(5):1259–1271. https://doi.org/10.1084/jem.20052494
Article CAS PubMed PubMed Central Google Scholar
Deng L, Liang H, Xu M et al (2014) STING-dependent cytosolic DNA sensing promotes radiation-induced type i interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41(5):843–852. https://doi.org/10.1016/j.immuni.2014.10.019
Article CAS PubMed PubMed Central Google Scholar
Jagodinsky JC, Morris ZS (2020) Priming and propagating anti-tumor immunity: focal hypofractionated radiation for in situ vaccination and systemic targeted radionuclide theranostics for immunomodulation of tumor microenvironments. Semin Radiat Oncol 30(2):181–186. https://doi.org/10.1016/j.semradonc.2019.12.008
Article PubMed PubMed Central Google Scholar
McBride S, Sherman E, Tsai CJ et al (2021) Randomized phase ii trial of nivolumab with stereotactic body radiotherapy versus nivolumab alone in metastatic head and neck squamous cell carcinoma. J Clin Oncol 39(1):30–37. https://doi.org/10.1200/jco.20.00290
Article CAS PubMed Google Scholar
Lee NY, Ferris RL, Psyrri A et al (2021) Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol 22(4):450–462. https://doi.org/10.1016/s1470-2045(20)30737-3
Article CAS PubMed Google Scholar
Theelen W, Peulen HMU, Lalezari F et al (2019) Effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer: results of the PEMBRO-RT phase 2 randomized clinical trial. JAMA Oncol 5(9):1276–1282. https://doi.org/10.1001/jamaoncol.2019.1478
Article PubMed PubMed Central Google Scholar
Mole RH (1953) Whole body irradiation; radiobiology or medicine? Br J Radiol 26(305):234–241. https://doi.org/10.1259/0007-1285-26-305-234
Article CAS PubMed Google Scholar
Brix N, Tiefenthaller A, Anders H et al (2017) Abscopal, immunological effects of radiotherapy: narrowing the gap between clinical and preclinical experiences. Immunol Rev 280(1):249–279. https://doi.org/10.1111/imr.12573
Article CAS PubMed Google Scholar
Demaria S, Kawashima N, Yang AM et al (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11(2 Pt 1):728–734
Article CAS PubMed Google Scholar
Park SS, Dong H, Liu X et al (2015) PD-1 restrains radiotherapy-induced abscopal effect. Cancer Immunol Res 3(6):610–619. https://doi.org/10.1158/2326-6066.Cir-14-0138
Article CAS PubMed PubMed Central Google Scholar
Sahoo BM, Banik BK, Borah P et al (2022) Reactive oxygen species (ROS): key components in cancer therapies. Anticancer Agents Med Chem 22(2):215–222. https://doi.org/10.2174/1871520621666210608095512
Article CAS PubMed Google Scholar
Sharabi AB, Nirschl CJ, Kochel CM et al (2015) Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol Res 3(4):345–355. https://doi.org/10.1158/2326-6066.Cir-14-0196
Article CAS PubMed Google Scholar
Dovedi SJ, Cheadle EJ, Popple AL et al (2017) Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and infiltrating polyclonal t-cell populations when combined with PD-1 blockade. Clin Cancer Res 23(18):5514–5526. https://doi.org/10.1158/1078-0432.Ccr-16-1673
Article CAS PubMed Google Scholar
Twyman-Saint Victor C, Rech AJ, Maity A et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520(7547):373–377. https://doi.org/10.1038/nature14292
Article CAS PubMed Google Scholar
Chakraborty M, Abrams SI, Camphausen K et al (2003) Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 170(12):6338–6347. https://doi.org/10.4049/jimmunol.170.12.6338
Article CAS PubMed Google Scholar
Kuwabara M, Takahashi K, Inanami O (2003) Induction of apoptosis through the activation of SAPK/JNK followed by the expression of death receptor Fas in X-irradiated cells. J Radiat Res 44(3):203–209. https://doi.org/10.1269/jrr.44.203
Article CAS PubMed Google Scholar
Yoshimoto Y, Oike T, Okonogi N et al (2015) Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation. J Radiat Res 56(3):509–514. https://doi.org/10.1093/jrr/rrv007
Article CAS PubMed PubMed Central Google Scholar
Galluzzi L, Humeau J, Buqué A et al (2020) Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol 17(12):725–741. https://doi.org/10.1038/s41571-020-0413-z
Vermeer DW, Spanos WC, Vermeer PD et al (2013) Radiation-induced loss of cell surface CD47 enhances immune-mediated clearance of human papillomavirus-positive cancer. Int J Cancer 133(1):120–129. https://doi.org/10.1002/ijc.28015
Comments (0)