Arnold, W. D., et al. (2014). Electrophysiological biomarkers in spinal muscular atrophy: Preclinical proof of concept. Annals of Clinical Translational Neurology, 1(1), 34–44.
Arnold, W. D., Kassar, D., & Kissel, J. T. (2015). Spinal muscular atrophy: Diagnosis and management in a new therapeutic era. Muscle and Nerve, 51(2), 157–167.
Article CAS PubMed Google Scholar
Awasthi, K., et al. (2019). The inherited neuromuscular disorder GNE myopathy: Research to patient care. Neurology India, 67(5), 1213–1219.
Barresi, R. (2011). From proteins to genes: Immunoanalysis in the diagnosis of muscular dystrophies. Skelet Muscle, 1(1), 24.
Article CAS PubMed PubMed Central Google Scholar
Birnkrant, D. J., et al. (2018). Diagnosis and management of Duchenne muscular dystrophy, part 2: Respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurology, 17(4), 347–361.
Bulaklak, K., et al. (2018). MicroRNA-206 downregulation improves therapeutic gene expression and motor function in MDX mice. Molecular Therapy: Nucleic Acids, 12, 283–293.
PubMed PubMed Central Google Scholar
Bushby, K., Norwood, F., & Straub, V. (2007). The limb-girdle muscular dystrophies–diagnostic strategies. Biochimica et Biophysica Acta, 1772(2), 238–242.
Article CAS PubMed Google Scholar
Cacchiarelli, D., et al. (2010). MicroRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway. Cell Metabolism, 12(4), 341–351.
Article CAS PubMed Google Scholar
Cassandrini, D., et al. (2017). Congenital myopathies: Clinical phenotypes and new diagnostic tools. Italian Journal of Pediatrics, 43(1), 101.
Article PubMed PubMed Central Google Scholar
Coenen-Stass, A. M. L., Wood, M. J. A., & Roberts, T. C. (2017). Biomarker potential of extracellular miRNAs in Duchenne Muscular dystrophy. Trends in Molecular Medicine, 23(11), 989–1001.
Article CAS PubMed Google Scholar
D’Amico, A., et al. (2011). Spinal muscular atrophy. Orphanet Journal of Rare Diseases, 6, 71.
Article PubMed PubMed Central Google Scholar
Di Pietro, L., et al. (2017). Potential therapeutic targets for ALS: MIR206, MIR208b and MIR499 are modulated during disease progression in the skeletal muscle of patients. Science and Reports, 7(1), 9538.
Freund, A. A., et al. (2007). Duchenne and Becker muscular dystrophy: A molecular and immunohistochemical approach. Arquivos De Neuro-Psiquiatria, 65(1), 73–76.
Giordani, L., et al. (2014). Muscle-specific microRNAs as biomarkers of Duchenne muscular dystrophy progression and response to therapies. Rare Dis, 2(1), e974969.
Article CAS PubMed PubMed Central Google Scholar
Hawley, Z. C. E., et al. (2017). MotomiRs: MiRNAs in motor neuron function and disease. Frontiers in Molecular Neuroscience, 10, 127.
Article PubMed PubMed Central Google Scholar
Hoye, M. L., et al. (2017). MicroRNA profiling reveals marker of motor neuron disease in ALS models. Journal of Neuroscience, 37(22), 5574–5586.
Article CAS PubMed Google Scholar
Hu, J., et al. (2014). Serum miR-206 and other muscle-specific microRNAs as non-invasive biomarkers for Duchenne muscular dystrophy. Journal of Neurochemistry, 129(5), 877–883.
Article CAS PubMed Google Scholar
Huang, W. (2017). MicroRNAs: Biomarkers, diagnostics, and therapeutics. Methods in Molecular Biology, 1617, 57–67.
Article CAS PubMed Google Scholar
Iyadurai, S. J., & Kissel, J. T. (2016). The limb-girdle muscular dystrophies and the dystrophinopathies. CONTINUUM (Minneap Minn), 22(6, Muscle and Neuromuscular Junction Disorders), 1954–1977.
Kim, S. Y., et al. (2018). Collagen VI-related myopathy: Expanding the clinical and genetic spectrum. Muscle and Nerve, 58(3), 381–388.
Article CAS PubMed Google Scholar
Kolb, S. J., & Kissel, J. T. (2015). Spinal muscular atrophy. Neurologic Clinics, 33(4), 831–846.
Article PubMed PubMed Central Google Scholar
Koutsoulidou, A., et al. (2022). Serum miRNAs as biomarkers for the rare types of muscular dystrophy. Neuromuscular Disorders, 32(4), 332–346.
Li, X., et al. (2014). Circulating muscle-specific miRNAs in Duchenne muscular dystrophy patients. Molecular Therapy: Nucleic Acids, 3(7), e177.
CAS PubMed PubMed Central Google Scholar
Lidov, H. G. (2000). The molecular neuropathology of the muscular dystrophies: A review and update. Journal of Neuropathology and Experimental Neurology, 59(12), 1019–1030.
Article CAS PubMed Google Scholar
Matsuzaka, Y., et al. (2014). Three novel serum biomarkers, miR-1, miR-133a, and miR-206 for Limb-girdle muscular dystrophy, Facioscapulohumeral muscular dystrophy, and Becker muscular dystrophy. Environmental Health and Preventive Medicine, 19(6), 452–458.
Article CAS PubMed PubMed Central Google Scholar
McNally, E. M., & Pytel, P. (2007). Muscle diseases: The muscular dystrophies. Annual Review of Pathology: Mechanisms of Disease, 2, 87–109.
Meng, Q., & Lan, D. (2019). A review on muscle-specific microRNAs as the biomarker for Duchenne muscular dystrophy. Zhongguo Dang Dai Er Ke Za Zhi, 21(11), 1148–1152.
Mousa, N. O., et al. (2020). Circulating MicroRNAs in Duchenne muscular dystrophy. Clinical Neurology and Neurosurgery, 189, 105634.
Nowak, K. J., & Davies, K. E. (2004). Duchenne muscular dystrophy and dystrophin: Pathogenesis and opportunities for treatment. EMBO Reports, 5(9), 872–876.
Article CAS PubMed PubMed Central Google Scholar
Perbellini, R., et al. (2011). Dysregulation and cellular mislocalization of specific miRNAs in myotonic dystrophy type 1. Neuromuscular Disorders, 21(2), 81–88.
Pogoryelova, O., et al. (2018). GNE myopathy: From clinics and genetics to pathology and research strategies. Orphanet Journal of Rare Diseases, 13(1), 70.
Article PubMed PubMed Central Google Scholar
Ravenscroft, G., Bryson-Richardson, R. J., Nowak, K. J., & Laing, N. G. (2018). Recent advances in understanding congenital myopathies. F1000Research, 7, 1971.
Ridler, C. (2018). MicroRNA from dying neurons triggers astrocytosis in ALS. Nature Reviews: Neurology, 14(10), 572.
Rizzuti, M., et al. (2018). MicroRNA expression analysis identifies a subset of downregulated miRNAs in ALS motor neuron progenitors. Science and Reports, 8(1), 10105.
Rybalka, E., et al. (2014). Defects in mitochondrial ATP synthesis in dystrophin-deficient mdx skeletal muscles may be caused by complex I insufficiency. PLoS ONE, 9(12), e115763.
Article PubMed PubMed Central Google Scholar
Shyu, K. G., et al. (2015). MicroRNA-208a increases myocardial endoglin expression and myocardial fibrosis in acute myocardial infarction. Canadian Journal of Cardiology, 31(5), 679–690.
Simone, C., et al. (2016). Is spinal muscular atrophy a disease of the motor neurons only: Pathogenesis and therapeutic implications? Cellular and Molecular Life Sciences, 73(5), 1003–1020.
Article CAS PubMed Google Scholar
Sjogren, R. J. O., Lindgren Niss, M. H. L., & Krook, A. (2017). Skeletal muscle microRNAs: Roles in differentiation, disease and exercise. In B. Spiegelman (Ed.), Hormones metabolism and the benefits of exercise (pp. 67–81). Cham: Springer.
Splinter, K., et al. (2018). Effect of genetic diagnosis on patients with previously undiagnosed disease. New England Journal of Medicine, 379(22), 2131–2139.
Article CAS PubMed Google Scholar
Sylvius, N., et al. (2011). MicroRNA expression profiling in patients with lamin A/C-associated muscular dystrophy. The FASEB Journal, 25(11), 3966–3978.
Article CAS PubMed Google Scholar
Valsecchi, V., et al. (2020). miR-206 reduces the severity of motor neuron degeneration in the facial nuclei of the brainstem in a mouse model of SMA. Molecular Therapy, 28, 1154–1166.
Article CAS PubMed PubMed Central Google Scholar
Wang, L., et al. (2018). The clinical spectrum and g
Comments (0)