Fang F, Xiao C, Li C, Liu X, Li S. Tuning macrophages for atherosclerosis treatment. Regen Biomater. 2023;10:rbac103. https://doi.org/10.1093/rb/rbac103
Article CAS PubMed Google Scholar
Sun X, Lyu L, Zhong X, Ni Z, Xu Q. Application of genetic cell-lineage tracing technology to study cardiovascular diseases. J Mol Cell Cardiol. 2021;156:57–68. https://doi.org/10.1016/j.yjmcc.2021.03.006
Article CAS PubMed Google Scholar
Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol. 2023; https://doi.org/10.1038/s41577-023-00848-y
Tomas L, Prica F, Schulz C. Trafficking of mononuclear phagocytes in healthy arteries and atherosclerosis. Front Immunol. 2021;12:718432. https://doi.org/10.3389/fimmu.2021.718432
Article CAS PubMed PubMed Central Google Scholar
Zhang L. Contribution of resident and recruited macrophages in vascular physiology and pathology. Curr Opin Hematol. 2018;25(3):196–203. https://doi.org/10.1097/MOH.0000000000000421
Article CAS PubMed Google Scholar
Robbins CS, Hilgendorf I, Weber GF, et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med. 2013;19(9):1166–72. https://doi.org/10.1038/nm.3258
Article CAS PubMed PubMed Central Google Scholar
Weinberger T, Esfandyari D, Messerer D, et al. Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nat Commun. 2020;11(1):4549. https://doi.org/10.1038/s41467-020-18287-x
Article CAS PubMed PubMed Central Google Scholar
Susser LI, Rayner KJ. Through the layers: how macrophages drive atherosclerosis across the vessel wall. J Clin Invest. 2022;132(9) https://doi.org/10.1172/JCI157011
Tong Y, Cai L, Yang S, et al. The research progress of vascular macrophages and atherosclerosis. Oxidative Med Cell Longev. 2020;2020:7308736. https://doi.org/10.1155/2020/7308736
Wu J, He S, Song Z, et al. Macrophage polarization states in atherosclerosis. Front Immunol. 2023;14:1185587. https://doi.org/10.3389/fimmu.2023.1185587
Article CAS PubMed PubMed Central Google Scholar
Zhang J, Ma CR, Hua YQ, et al. Contradictory regulation of macrophages on atherosclerosis based on polarization, death and autophagy. Life Sci. 2021;276:118957. https://doi.org/10.1016/j.lfs.2020.118957
Article CAS PubMed Google Scholar
Eshghjoo S, Kim DM, Jayaraman A, Sun Y, Alaniz RC. Macrophage polarization in atherosclerosis. Genes (Basel). 2022;13(5) https://doi.org/10.3390/genes13050756
Lee J, Choi J-H. Deciphering macrophage phenotypes upon lipid uptake and atherosclerosis. Immune Netw. 2020;20(3):e22. https://doi.org/10.4110/in.2020.20.e22
Article PubMed PubMed Central Google Scholar
Mouton AJ, Li X, Hall ME, Hall JE. Obesity, hypertension, and cardiac dysfunction: novel roles of immunometabolism in macrophage activation and inflammation. Circ Res. 2020;126(6):789–806. https://doi.org/10.1161/CIRCRESAHA.119.312321
Article CAS PubMed PubMed Central Google Scholar
Rendra E, Riabov V, Mossel DM, et al. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology. 2019;224(2):242–53. https://doi.org/10.1016/j.imbio.2018.11.010
Article CAS PubMed Google Scholar
Bi C, Fu Y, Li B. Brain-derived neurotrophic factor alleviates diabetes mellitus-accelerated atherosclerosis by promoting M2 polarization of macrophages through repressing the STAT3 pathway. Cell Signal. 2020;70:109569. https://doi.org/10.1016/j.cellsig.2020.109569
Article CAS PubMed Google Scholar
de-Brito NM, Duncan-Moretti J, da-Costa HC, et al. Aerobic glycolysis is a metabolic requirement to maintain the M2-like polarization of tumor-associated macrophages. Biochim Biophys Acta Mol. Cell Res. 2020;1867(2):118604. https://doi.org/10.1016/j.bbamcr.2019.118604
Kotwal GJ, Chien S. Macrophage differentiation in normal and accelerated wound healing. Results Probl Cell Differ. 2017;62:353–64. https://doi.org/10.1007/978-3-319-54090-0_14
Article CAS PubMed PubMed Central Google Scholar
Xu H, Jiang J, Chen W, Li W, Chen Z. Vascular macrophages in atherosclerosis. J Immunol Res. 2019;2019:4354786. https://doi.org/10.1155/2019/4354786
Article CAS PubMed PubMed Central Google Scholar
Theofilis P, Oikonomou E, Tsioufis K, Tousoulis D. The role of macrophages in atherosclerosis: pathophysiologic mechanisms and treatment considerations. Int J Mol Sci. 2023;24(11) https://doi.org/10.3390/ijms24119568
Liberale L, Dallegri F, Montecucco F, Carbone F. Pathophysiological relevance of macrophage subsets in atherogenesis. Thromb Haemost. 2017;117(1) https://doi.org/10.1160/TH16-08-0593
Kadl A, Meher AK, Sharma PR, et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res. 2010;107(6):737–46. https://doi.org/10.1161/CIRCRESAHA.109.215715
Article CAS PubMed PubMed Central Google Scholar
Boyle JJ. Heme and haemoglobin direct macrophage Mhem phenotype and counter foam cell formation in areas of intraplaque haemorrhage. Curr Opin Lipidol. 2012;23(5):453–61. https://doi.org/10.1097/MOL.0b013e328356b145
Article CAS PubMed Google Scholar
Barrett TJ. Macrophages in atherosclerosis regression. Arterioscler Thromb Vasc Biol. 2020;40(1):20–33. https://doi.org/10.1161/ATVBAHA.119.312802
Article CAS PubMed Google Scholar
Skuratovskaia D, Vulf M, Khaziakhmatova O, et al. Tissue-specific role of macrophages in noninfectious inflammatory disorders. Biomedicines. 2020;8(10) https://doi.org/10.3390/biomedicines8100400
Xie Y, Chen H, Qu P, et al. Novel insight on the role of macrophages in atherosclerosis: focus on polarization, apoptosis and efferocytosis. Int Immunopharmacol. 2022;113(Pt A):109260. https://doi.org/10.1016/j.intimp.2022.109260
Article CAS PubMed Google Scholar
Jinnouchi H, Guo L, Sakamoto A, et al. Diversity of macrophage phenotypes and responses in atherosclerosis. Cell Mol Life Sci. 2020;77(10):1919–32. https://doi.org/10.1007/s00018-019-03371-3
Article CAS PubMed Google Scholar
Lin P, Ji H-H, Li Y-J, Guo S-D. Macrophage plasticity and atherosclerosis therapy. Front Mol Biosci. 2021;8:679797. https://doi.org/10.3389/fmolb.2021.679797
Article CAS PubMed PubMed Central Google Scholar
Qi JR, Zhao DR, Zhao L, Luo F, Yang M. MiR-520a-3p inhibited macrophage polarization and promoted the development of atherosclerosis via targeting UVRAG in apolipoprotein E knockout mice. Front Mol Biosci. 2020;7:621324. https://doi.org/10.3389/fmolb.2020.621324
Article CAS PubMed Google Scholar
Ouimet M, Ediriweera HN, Gundra UM, et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest. 2015;125(12):4334–48. https://doi.org/10.1172/JCI81676
Article PubMed PubMed Central Google Scholar
Guo Q, Zhu X, Wei R, et al. miR-130b-3p regulates M1 macrophage polarization via targeting IRF1. J Cell Physiol. 2021;236(3):2008–22. https://doi.org/10.1002/jcp.29987
Article CAS PubMed Google Scholar
Zhao X, Di Q, Liu H, et al. MEF2C promotes M1 macrophage polarization and Th1 responses. Cell Mol Immunol. 2022;19(4):540–53. https://doi.org/10.1038/s41423-022-00841-w
Article CAS PubMed PubMed Central Google Scholar
Meng M, Cao Y, Zhang Y, et al. HnRNPA2B1 aggravates inflammation by promoting M1 macrophage polarization. Nutrients. 2023;15(7) https://doi.org/10.3390/nu15071555
Li J, Yang S, Han Z, et al. Akt2 inhibitor promotes M2 macrophage polarization in rats with periapical inflammation by reducing miR-155-5p expression. Nan Fang Yi Ke Da Xue Xue Bao. 2023;43(4):568–76. https://doi.org/10.12122/j.issn.1673-4254.2023.04.09
Article CAS PubMed Google Scholar
Bai L, Li Z, Li Q, et al. Mediator 1 is atherosclerosis protective by regulating macrophage polarization. Arterioscler Thromb Vasc Biol. 2017;37(8):1470–81. https://doi.org/10.1161/ATVBAHA.117.309672
Article CAS PubMed PubMed Central Google Scholar
Song F, Li J-Z, Wu Y, et al. Ubiquitinated ligation protein NEDD4L participates in MiR-30a-5p attenuated atherosclerosis by regulating macrophage polarization and lipid metabolism. Mol Ther Nucleic Acids. 2021;26:1303–17. https://doi.org/10.1016/j.omtn.2021.10.030
Article CAS PubMed PubMed Central Google Scholar
Lin E-S, Hsu Y-A, Chang C-Y, et al. Ablation of galectin-12 inhibits atherosclerosis through enhancement of M2 macrophage polarization. Int J Mol Sci. 2020;21(15) https://doi.org/10.3390/ijms21155511
Nagenborg J, Goossens P, Biessen EAL, Donners MMPC. Heterogeneity of atherosclerotic plaque macrophage origin, phenotype and functions: implications for treatment. Eur J Pharmacol. 2017;816:14–24. https://doi.org/10.1016/j.ejphar.2017.10.005
Article CAS PubMed Google Scholar
Park S-J, Lee K-P, Kang S, et al. Sphingosine 1-ph
Comments (0)