Merton P, Morton H. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285:227.
Article CAS PubMed Google Scholar
Taniguchi M, Schram J, Cedzich C. Recording of myogenic motor evoked potential (mMEP) under general anesthesia. In: Schramm J, Moller AR, editors. Intraoperative neurophysiological monitoring. Berlin: Springer; 1991. p. 72–87.
mThuet ED, Winscher JC, Padberg AM, Bridwell KH, Lenke LG, Dobbs MB, Schootman M, Luhmann SJ. Validity and reliability of intraoperative monitoring in pediatric spinal deformity surgery: a 23-year experience of 3436 surgical cases. Spine. 2010;35:1880–6.
Pastorelli F, Di Silvestre M, Plasmati R, Michelucci R, Greggi T, Morigi A, Bacchin MR, Bonarelli S, Cioni A, Vommaro F, Fini N, Lolli F, Parisini P. The prevention of neural complications in the surgical treatment of scoliosis: the role of the neurophysiological intraoperative monitoring. Eur Spine J. 2011;20:105–14.
Article PubMed Central Google Scholar
Malcharek MJ, Kulpok A, Deletis V, Ulkatan S, Sablotzki A, Hennig G, Gille J, Pilge S, Schneider G. Intraoperative multimodal evoked potential monitoring during carotid endarterectomy: a retrospective study of 264 patients. Anesth Analg. 2015;120:1352–60.
Malcharek M, Ulkatan S, Marinò V, Geyer M, Lladó-Carbó E, Perez-Fajardo G, Arranz-Arranz B, Climent J, Aloj F, Franco E, Chiacchiari L, Kulpok A, Sablotzki A, Hennig G, Deletis V. Intraoperative monitoring of carotid endarterectomy by transcranial motor evoked potential: a multicenter study of 600 patients. Clinical Neurophysiol. 2013;124:1025–30.
Jacobs MJ, Mess W, Mochtar B, Nijenhuis RJ, van Eps RGS, Schurink GWH. The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vasc Surg. 2006;43:239–46.
Kawanishi Y, Munakata H, Matsumori M, Tanaka H, Yamashita T, Nakagiri K, Okada K, Okita Y. Usefulness of transcranial motor evoked potentials during thoracoabdominal aortic surgery. Ann Thorac Surg. 2007;83:456–61.
Tanaka Y, Kawaguchi M, Noguchi Y, Yoshitani K, Kawamata M, Masui K, Nakayama T, Yamada Y. Systematic review of motor evoked potentials monitoring during thoracic and thoracoabdominal aortic aneurysm open repair surgery: a diagnostic meta-analysis. J Anesth. 2016;30:1037–50.
van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, Langemeijer HJ, de Boer A, Boezeman EH. Within-patient variability of myogenic motor-evoked potentials to multipulse transcranial electrical stimulation during two levels of partial neuromuscular blockade in aortic surgery. Anesth Analg. 1999;88:22–7.
Kawaguchi M, Iida H, Tanaka S, Fukuoka N, Hayashi H, Izumi S, Yoshitani K, Kakinohana M, MEP Monitoring guideline working group of the safety committee of the japanese society of anesthesiologists (JSA). A practical guide for anesthetic management during intraoperative motor evoked potential monitoring. J Anesth. 2020;34:5–28.
Legatt AD, Emerson RG, Epstein CM, MacDonald DB, Deletis V, Bravo RJ, López JR. ACNS guideline: transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol. 2016;33:42–50.
Jameson LC. Transcranial motor-evoked potentials. In: Koht A, Sloan T, Toleikis J, editors. Monitoring the nervous system for anesthesiologists and other health care professionals. Cham: Springer; 2017. p. 19–33.
Sloan TB. Muscle relaxant use during intraoperative neurophysiologic monitoring. J Clin Monit Comput. 2013;27:35–46.
Thilen SR, Weigel WA, Todd MM, Dutton RP, Lien CA, Grant SA, Szokol JW, Eriksson LI, Yaster M, Grant MD, Agarkar M, Marbella AM, Blanck JF, Domino KB. 2023 American Society of Anesthesiologists practice guidelines for monitoring and antagonism of neuromuscular blockade: A report by the American Society of Anesthesiologists task force on neuromuscular blockade. Anesthesiology. 2023;138:13–41.
Kalkman CJ, Drummond JC, Kennelly NA, Patel PM, Partridge BL. Intraoperative monitoring of tibialis anterior muscle motor evoked responses to transcranial electrical stimulation during partial neuromuscular blockade. Anesth Analg. 1992;75:584–9.
Article CAS PubMed Google Scholar
Yamamoto Y, Kawaguchi M, Hayashi H, Horiuchi T, Inoue S, Nakase H, Sakaki T, Furuya H. The effects of the neuro- muscular blockade levels on amplitudes of posttetanic motor-evoked potentials and movement in response to transcranial stimulation in patients receiving propofol and fentanyl anesthesia. Anesth Analg. 2008;106:930–4.
Article CAS PubMed Google Scholar
Naguib M, Brull SJ, Kopman AF, Hunter JM, Fülesdi B, Arkes HR, Elstein A, Todd MM, Johnson KB. Consensus statement on perioperative use of neuromuscular monitoring. Anesth Analg. 2018;127:71–80.
Domenech G, Kampel MA, García Guzzo ME, Novas DS, Terrasa SA, Fornari GG. Usefulness of intra-operative neuromuscular blockade monitoring and reversal agents for postoperative residual neuromuscular blockade: a retrospective observational study. BMC Anesthesiol. 2019;19:143.
Article PubMed PubMed Central Google Scholar
Trifa M, Krishna S, D’Mello A, Hakim M, Tobias JD. Sugammadex to reverse neuromuscular blockade and provide optimal conditions for motor-evoked potential monitoring. Saudi J Anaesth. 2017;11:219–21.
Article PubMed PubMed Central Google Scholar
Hayashi H, Bebawy JF, Koht A, Hemmer LB. Cautionary findings for motor evoked potential monitoring in intracranial aneurysm surgery after a single administration of rocuronium to facilitate tracheal intubation. J Clin Monit Comput. 2021;35:903–11.
Hayashi H, Yamada M, Okuyama K, Takatani T, Shigematsu H, Tanaka Y, Kawaguchi M. Retrospective observational study of the effects of residual neuromuscular blockade and sugammadex on motor-evoked potential monitoring during spine surgery in Japan. Medicine (Baltimore). 2022;101: e30841.
Article CAS PubMed Google Scholar
Venkatraghavan L, Royan N, Boyle SL, Dinsmore M, Lu N, Cushman K, Massicotte EM, Prabhu A. Effect of reversal of residual neuromuscular blockade on the amplitude of motor evoked potentials: a randomized controlled crossover study comparing sugammadex and placebo. Neurol Sci. 2022;43:615–23.
Wang AC, Than KD, Etame AB, La Marca F, Park P. Impact of anesthesia on transcranial electric motor evoked potential monitoring during spine surgery: a review of the literature. Neurosurg Focus. 2009;27:E7.
Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus. 2009;27:E6.
Hristovska AM, Duch P, Allingstrup M, Afshari A. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane Database Syst Rev. 2017;8:CD012763.
Geldner G, Niskanen M, Laurila P, Mizikov V, Hübler M, Beck G, Rietbergen H, Nicolayenko E. A randomised controlled trial comparing sugammadex and neostigmine at different depths of neuromuscular blockade in patients undergoing laparoscopic surgery. Anaesthesia. 2012;67:991–8.
Article CAS PubMed Google Scholar
Erhan E, Ugur G, Alper I, Gunusen I, Ozyar B. Tracheal intubation without muscle relaxants: remifentanil or alfentanil in combination with propofol. Eur J Anaesthesiol. 2003;20:37–43.
Article CAS PubMed Google Scholar
Mencke T, Echternach M, Kleinschmidt S, Lux P, Barth V, Plinkert PK, Fuchs-Buder T. Laryngeal morbidity and quality of tracheal intubationa randomized controlled trial. Anesthesiology. 2003;98:1049–56.
Article CAS PubMed Google Scholar
Renew JR, Naguib M, Brull S. Clinical use of neuromuscular blocking agents in anesthesia. Waltham: UpToDate; 2019.
Batistaki C, Papadopoulos K, Kalimeris KA, Soultanis K, Alevizou A, Pantazi M, Kostopanagiotou GG. Sugammadex to reverse rocuronium and facilitate intraoperative motor evoked potentials monitoring during spinal surgery. Anaesth Intensive Care. 2012;40:1073–4.
Liu H, Jian M, Wang C, Nie L, Liang F, Liu K, Zhang K, Qiao H, Han R. Effect of sugammadex during transcranial electrical motor evoked potentials monitoring in spinal surgery: a randomized controlled trial. J Neurosurg Anesthesiol. 2023;35:224–31.
Alkhatib MZ, Elarjani T, Alkhalefah AM, Farrash F. Sudden onset temporary loss of SSEP and MEP as a result to positional neck changes in an intradural extramedullary cervical spine schwannoma: a case report. Interdiscip Neurosurg. 2020;21:100717.
Graham RB, Cotton M, Koht A, Koski TR. Loss of intraoperative neurological monitoring signals during flexed prone positioning on a hinged open frame during surgery for kyphoscoliosis correction: case report. J Neurosurg Spine. 2018;29:339–43.
Daehee Suh MD, Cho J, Yoo B, Lee S. The efficacy of sugammadex in the monitoring of motor evoked potentials for spine surgery: a 10 cases review. Sch J Med Case Rep. 2020;8:774–7.
Schaller SJ, Fink H. Sugammadex as a reversal agent for neuromuscular block: an evidence-based review. Core Evid. 2013;8:57–67.
CAS PubMed PubMed Central Google Scholar
Llauradó S, Sabaté A, Ferreres E, Camprubí I, Cabrera A. Sugammadex ideal body weight dose adjusted by level of neuromuscular blockade in laparoscopic bariatric surgery. Anesthesiology. 2012;117:93–8.
Van Lancker P, Dillemans B, Bogaert T, Mulier JP, De Kock M, Haspeslagh M. Ideal versus corrected body weight for dosage of sugammadex in morbidly obese patients. Anaesthesia. 2011;66:721–5.
Cammu G, de Kam PJ, De Graeve K, van den Heuvel M, Suy K, Morias K, Foubert L, Grobara P, Peeters P. Repeat dosing of rocuronium 1.2 mg kg-1 after reversal of neuromuscular block by sugammadex 4.0 mg kg-1 in anaesthetized healthy volunteers: a modelling-based pilot study. Br J Anaesth. 2010;105:487–92.
Comments (0)