Acín, A., Massar, S., Pironio, S.: Randomness versus nonlocality and entanglement. Phys. Rev. Lett. 108, 100402 (2012)
Baptista, P., Chen, R., Kaniewski, J., Lolck, D.R., Mančinska, L., Nielsen, T.G., Schmidt, S.: Personal communication
Beigi, S.: Separation of quantum, spatial quantum, and approximate quantum correlations. Quantum 5, 389 (2021)
Blackadar, B.: Operator Algebras: Theory of \(^*\)-algebras and von Neumann Algebras, vol. 122. Springer, Berlin (2006)
Bamps, C., Pironio, S.: Sum-of-squares decompositions for a family of Clauser–Horne–Shimony–Holt-like inequalities and their application to self-testing. Phys. Rev. A 91, 052111 (2015)
Bowles, J., Šupić, I., Cavalcanti, D., Acín, A.: Device-independent entanglement certification of all entangled states. Phys. Rev. Lett. 121(18), 180503 (2018)
Bowles, J., Šupić, I., Cavalcanti, D., Acín, A.: Self-testing of Pauli observables for device-independent entanglement certification. Phys. Rev. A 98(4), 042336 (2018)
Coladangelo, A., Goh, K.T., Scarani, V.: All pure bipartite entangled states can be self-tested. Nat. Commun. 8(1), 1–5 (2017)
Christandl, M., Houghton-Larsen, N.G., Mančinska, L.: An operational environment for quantum self-testing. Quantum 6, 699 (2022)
Cleve, R., Hoyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. arXiv preprint arXiv:quant-ph/0404076v2 (2010)
Cleve, R., Liu, L., Paulsen, V.I.: Perfect embezzlement of entanglement. J. Math. Phys. 58(1), 11 (2017)
Article MathSciNet MATH Google Scholar
Cleve, R., Mittal, R.: Characterization of binary constraint system games. In: International Colloquium on Automata, Languages, and Programming, pp. 320–331. Springer (2014)
Coladangelo, A.: A two-player dimension witness based on embezzlement, and an elementary proof of the non-closure of the set of quantum correlations. Quantum 4, 282 (2020)
Coladangelo, A., Stark, J.: Unconditional separation of finite and infinite-dimensional quantum correlations. arXiv:1804.05116 (2018)
Dudko, A., Medynets, K.: Finite factor representations of Higman–Thompson groups. Groups Geom. Dyn. 8(2), 375–389 (2014)
Article MathSciNet MATH Google Scholar
Frei, A.: The quantum commuting model (Ia): The CHSH game and other examples: uniqueness of optimal states. arXiv:2210.03716 (2022)
Fritz, T.: Tsirelson’s problem and Kirchberg’s conjecture. Rev. Math. Phys. 24(05), 1250012 (2012)
Article MathSciNet MATH Google Scholar
Junge, M., Navascues, M., Palazuelos, C., Perez-Garcia, D., Scholz, V.B., Werner, R.F.: Connes’ embedding problem and Tsirelson’s problem. J. Math. Phys. 52(1), 012102 (2011)
Article ADS MathSciNet MATH Google Scholar
Ji, Z., Natarajan, A., Vidick, T., Wright, J., Yuen, H.: MIP*=RE. arXiv:2001.04383 (2020)
Mančinska, L., Schmidt, S.: A non-robust self-test and games that do not self-test states. arXiv:2212.11572 (2022)
Mayers, D., Yao, A.: Self testing quantum apparatus. Quantum Inf. Comput. 4(4), 273–286 (2004)
MathSciNet MATH Google Scholar
Paulsen, V.I., Severini, S., Stahlke, D., Todorov, I.G., Winter, A.: Estimating quantum chromatic numbers. J. Funct. Anal. 270(6), 2188–2222 (2016)
Article MathSciNet MATH Google Scholar
Šupić, I., Bowles, J.: Self-testing of quantum systems: a review. Quantum 4, 337 (2020)
Slofstra, W.: The set of quantum correlations is not closed. Forum Math. Pi 7, e1 (2019)
Article MathSciNet MATH Google Scholar
Scholz, V.B., Werner, R.F.: Tsirelson’s problem. arXiv:0812.4305 (2008)
Tsirel’son, B.S.: Quantum analogues of the Bell inequalities. The case of two spatially separated domains. J. Sov. Math. 36(4), 557–570 (1987)
Comments (0)