Abrahamson, E. E., Leak, R. K., & Moore, R. Y. (2001). The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport, 12(2), 435–440. https://doi.org/10.1097/00001756-200102120-00048.
Article CAS PubMed Google Scholar
Baloyannis, S. J., Mavroudis, I., Mitilineos, D., Baloyannis, I. S., & Costa, V. G. (2015). The hypothalamus in Alzheimer’s Disease: A golgi and electron microscope study. Am J Alzheimers Dis Other Demen, 30(5), 478–487. https://doi.org/10.1177/1533317514556876.
Belfiore, R., Rodin, A., Ferreira, E., Velazquez, R., Branca, C., Caccamo, A., & Oddo, S. (2019). Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell, 18(1), e12873. https://doi.org/10.1111/acel.12873.
Article CAS PubMed Google Scholar
Bellanti, F., Iannelli, G., Blonda, M., Tamborra, R., Villani, R., Romano, A., Calcagnini, S., Mazzoccoli, G., Vinciguerra, M., Gaetani, S., Giudetti, A. M., Vendemiale, G., Cassano, T., & Serviddio, G. (2017). Alterations of clock gene RNA expression in brain regions of a Triple Transgenic Model of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 59(2), 615–631. https://doi.org/10.3233/jad-160942.
Article CAS PubMed PubMed Central Google Scholar
Belle, M. D., Hughes, A. T., Bechtold, D. A., Cunningham, P., Pierucci, M., Burdakov, D., & Piggins, H. D. (2014). Acute suppressive and long-term phase modulation actions of orexin on the mammalian circadian clock. Journal of Neuroscience, 34(10), 3607–3621. https://doi.org/10.1523/jneurosci.3388-13.2014.
Article CAS PubMed Google Scholar
Beuckmann, C. T., Suzuki, H., Musiek, E. S., Ueno, T., Sato, T., Bando, M., Osada, Y., & Moline, M. (2021). Evaluation of SAMP8 mice as a Model for Sleep-Wake and Rhythm disturbances Associated with Alzheimer’s Disease: Impact of treatment with the dual orexin (hypocretin) receptor antagonist Lemborexant. Journal of Alzheimer’s Disease, 81(3), 1151–1167. https://doi.org/10.3233/jad-201054.
Article CAS PubMed PubMed Central Google Scholar
Carrero, L., Antequera, D., Alcalde, I., Megias, D., Figueiro-Silva, J., Merayo-Lloves, J., Municio, C., & Carro, E. (2023). Disturbed circadian rhythm and retinal degeneration in a mouse model of Alzheimer’s Disease. Acta Neuropathol Commun, 11(1), 55. https://doi.org/10.1186/s40478-023-01529-6.
Article CAS PubMed PubMed Central Google Scholar
De Luca, R., Nardone, S., Grace, K. P., Venner, A., Cristofolini, M., Bandaru, S. S., Sohn, L. T., Kong, D., Mochizuki, T., Viberti, B., Zhu, L., Zito, A., Scammell, T. E., Saper, C. B., Lowell, B. B., Fuller, P. M., & Arrigoni, E. (2022). Orexin neurons inhibit sleep to promote arousal. Nature Communications, 13(1), 4163. https://doi.org/10.1038/s41467-022-31591-y.
Article CAS PubMed PubMed Central Google Scholar
Do, K., Laing, B. T., Landry, T., Bunner, W., Mersaud, N., Matsubara, T., Li, P., Yuan, Y., Lu, Q., & Huang, H. (2018). The effects of exercise on hypothalamic neurodegeneration of Alzheimer’s Disease mouse model. PLoS One, 13(1), e0190205. https://doi.org/10.1371/journal.pone.0190205.
Article CAS PubMed PubMed Central Google Scholar
Elahdadi Salmani, M., Sarfi, M., & Goudarzi, I. (2022). Hippocampal orexin receptors: Localization and function. Vitamins and Hormones, 118, 393–421. https://doi.org/10.1016/bs.vh.2021.12.004.
Gao, F., Liu, T., Tuo, M., & Chi, S. (2021). The role of orexin in Alzheimer Disease: From sleep-wake disturbance to therapeutic target. Neuroscience Letters, 765, 136247. https://doi.org/10.1016/j.neulet.2021.136247.
Article CAS PubMed Google Scholar
Gao, W. R., Hu, X. H., Yu, K. Y., Cai, H. Y., Wang, Z. J., Wang, L., & Wu, M. N. (2023). Selective orexin 1 receptor antagonist SB-334867 aggravated cognitive dysfunction in 3xTg-AD mice. Behavioural Brain Research, 438, 114171. https://doi.org/10.1016/j.bbr.2022.114171.
Article CAS PubMed Google Scholar
Guo, P., Zhang, W. J., Lian, T. H., Zhang, W. J., He, M. Y., Zhang, Y. N., Huang, Y., Ding, D. Y., Guan, H. Y., Li, J. H., Li, D. N., Luo, D. M., Zhang, W. J., Yue, H., Wang, X. M., & Zhang, W. (2023). Alzheimer’s Disease with sleep insufficiency: A cross-sectional study on correlations among clinical characteristics, orexin, its receptors, and the blood-brain barrier. Neural Regen Res, 18(8), 1757–1762. https://doi.org/10.4103/1673-5374.360250.
Hampel, H., Vassar, R., De Strooper, B., Hardy, J., Willem, M., Singh, N., Zhou, J., Yan, R., Vanmechelen, E., De Vos, A., Nisticò, R., Corbo, M., Imbimbo, B. P., Streffer, J., Voytyuk, I., Timmers, M., Tahami Monfared, A. A., Irizarry, M., Albala, B., Koyama, A., Watanabe, N., Kimura, T., Yarenis, L., Lista, S., Kramer, L., & Vergallo, A. (2021). The β-Secretase BACE1 in Alzheimer’s Disease. Biological Psychiatry, 89(8), 745–756. https://doi.org/10.1016/j.biopsych.2020.02.001.
Article CAS PubMed Google Scholar
Han, D., Han, F., Shi, Y., Zheng, S., & Wen, L. (2020). Mechanisms of Memory Impairment Induced by Orexin-A via Orexin 1 and Orexin 2 receptors in post-traumatic stress disorder rats. Neuroscience, 432, 126–136. https://doi.org/10.1016/j.neuroscience.2020.02.026.
Article CAS PubMed Google Scholar
Holth, J. K., Fritschi, S. K., Wang, C., Pedersen, N. P., Cirrito, J. R., Mahan, T. E., Finn, M. B., Manis, M., Geerling, J. C., Fuller, P. M., Lucey, B. P., & Holtzman, D. M. (2019). The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science, 363(6429), 880–884. https://doi.org/10.1126/science.aav2546.
Article CAS PubMed PubMed Central Google Scholar
Hughes, M. E., Hogenesch, J. B., & Kornacker, K. (2010). JTK_CYCLE: An efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythms, 25(5), 372–380. https://doi.org/10.1177/0748730410379711.
Article PubMed PubMed Central Google Scholar
Kang, J. E., Lim, M. M., Bateman, R. J., Lee, J. J., Smyth, L. P., Cirrito, J. R., Fujiki, N., Nishino, S., & Holtzman, D. M. (2009). Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science, 326(5955), 1005–1007. https://doi.org/10.1126/science.1180962.
Article CAS PubMed PubMed Central Google Scholar
Kim, E., Nohara, K., Wirianto, M., Escobedo, G., Lim, J., Morales, J. Y., Yoo, R. S. H., & Chen, Z. (2021). Effects of the clock modulator nobiletin on circadian rhythms and pathophysiology in female mice of an Alzheimer’s Disease model. Biomolecules. https://doi.org/10.3390/biom11071004
Article PubMed PubMed Central Google Scholar
Kourosh-Arami, M., Komaki, A., Joghataei, M. T., & Mohsenzadegan, M. (2020). Phospholipase Cbeta3 in the hippocampus may mediate impairment of memory by long-term blockade of orexin 1 receptors assessed by the Morris water maze. Life Sciences, 257, 118046. https://doi.org/10.1016/j.lfs.2020.118046.
Article CAS PubMed Google Scholar
Liguori, C., Romigi, A., Nuccetelli, M., Zannino, S., Sancesario, G., Martorana, A., Albanese, M., Mercuri, N. B., Izzi, F., Bernardini, S., Nitti, A., Sancesario, G. M., Sica, F., Marciani, M. G., & Placidi, F. (2014). Orexinergic system dysregulation, sleep impairment, and cognitive decline in Alzheimer Disease. JAMA Neurol, 71(12), 1498–1505. https://doi.org/10.1001/jamaneurol.2014.2510.
Liguori, C., Nuccetelli, M., Izzi, F., Sancesario, G., Romigi, A., Martorana, A., Amoroso, C., Bernardini, S., Marciani, M. G., Mercuri, N. B., & Placidi, F. (2016). Rapid eye movement sleep disruption and sleep fragmentation are associated with increased orexin-A cerebrospinal-fluid levels in mild cognitive impairment due to Alzheimer’s Disease. Neurobiology of Aging, 40, 120–126. https://doi.org/10.1016/j.neurobiolaging.2016.01.007.
Article CAS PubMed Google Scholar
Liguori, C., Spanetta, M., Izzi, F., Franchini, F., Nuccetelli, M., Sancesario, G. M., Di Santo, S., Bernardini, S., Mercuri, N. B., & Placidi, F. (2020). Sleep-wake cycle in Alzheimer’s Disease is associated with Tau pathology and orexin dysregulation. Journal of Alzheimer’s Disease, 74(2), 501–508. https://doi.org/10.3233/jad-191124
Article CAS PubMed Google Scholar
Lu, Q., & Kim, J. Y. (2022). Mammalian circadian networks mediated by the suprachiasmatic nucleus. Febs j, 289(21), 6589–6604. https://doi.org/10.1111/febs.16233.
Article CAS PubMed Google Scholar
Ma, Z., Jiang, W., & Zhang, E. E. (2016). Orexin signaling regulates both the hippocampal clock and the circadian oscillation of Alzheimer’s disease-risk genes. Scientific Reports, 6, 36035. https://doi.org/10.1038/srep36035.
Article CAS PubMed PubMed Central Google Scholar
Ma, C., Hong, F., & Yang, S. (2022). Amyloidosis in Alzheimer’s Disease: Pathogeny, etiology, and related therapeutic directions. Molecules, 27(4), 1210. https://doi.org/10.3390/molecules27041210.
Article CAS PubMed PubMed Central Google Scholar
Moussa-Pacha, N. M., Abdin, S. M., Omar, H. A., Alniss, H., & Al-Tel, T. H. (2020). BACE1 inhibitors: Current status and future directions in treating Alzheimer’s Disease. Medicinal Research Reviews, 40(1), 339–384. https://doi.org/10.1002/med.21622.
Musiek, E. S., Bhimasani, M., Zangrilli, M. A., Morris, J. C., Holtzman, D. M., & Ju, Y. S. (2018). Circadian rest-activity pattern changes in aging and preclinical Alzheimer Disease. JAMA Neurol, 75(5), 582–590. https://doi.org/10.1001/jamaneurol.2017.4719
Naseri, N. N., Wang, H., Guo, J., Sharma, M., & Luo, W. (2019). The complexity of tau in Alzheimer’s Disease. Neuroscience Letters, 705, 183–194. https://doi.org/10.1016/j.neulet.2019.04.022.
Article CAS PubMed PubMed Central Google Scholar
Nassan, M., & Videnovic, A. (2022). Circadian rhythms in neurodegenerative disorders. Nat Rev Neurol, 18(1), 7–24. https://doi.org/10.1038/s41582-021-00577-7.
Comments (0)