The specific NQO2 inhibitor, S29434, only marginally improves the survival of dopamine neurons in MPTP-intoxicated mice

Asanuma M, Miyazaki I, Ogawa N (2003) Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox Res 5(3):165–176

Article  PubMed  Google Scholar 

Benoit C-E, Bastianetto S, Brouillette J, Tse Y, Boutin JA, Delagrange P, Wong T, Sarret P, Quirion R (2010) Loss of quinone reductase 2 function selectively facilitates learning behaviors. J Neurosci 30(38):12690–12700

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boutin JA, Bouillaud F, Janda E, Gacsalyi I, Guillaumet G, Hirsch EC, Kane DA, Nepveu F, Reybier K, Dupuis P, Bertrand M, Chhour M, Le Diguarher T, Antoine M, Brebner K, Da Costa H, Ducrot P, Giganti A, Goswami V, Guedouari H, Michel PP, Patel A, Paysant J, Stojko J, Viaud-Massuard M-C, Ferry G (2019) S29434, a quinone reductase 2 inhibitor: main biochemical and cellular characterization. Mol Pharmacol 95(3):269–285

Article  CAS  PubMed  Google Scholar 

Brouillette J, Quirion R (2008) Transthyretin: a key gene involved in the maintenance of memory capacities during aging. Neurobiol Aging 29(11):1721–1732

Article  CAS  PubMed  Google Scholar 

Cassagnes L-E, Perio P, Ferry G, Moulharat N, Antoine M, Gayon R, Boutin JA, Nepveu F, Reybier K (2015) In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the redox cycling of 1,2 and 1,4 quinones. Free Radic Biol Med 89:126–134

Article  CAS  PubMed  Google Scholar 

Cassagnes L-E, Chhour M, Pério P, Sudor J, Gayon R, Ferry G, Boutin JA, Nepveu F, Reybier K (2018) Oxidative stress and neurodegeneration: the possible contribution of quinone reductase 2. Free Radic Biol Med 120:56–61

Article  CAS  PubMed  Google Scholar 

Chang K-H, Chen C-M (2020) The role of oxidative stress in Parkinson’s disease. Antioxidants (basel) 9(7):597

Article  CAS  PubMed  Google Scholar 

Corasaniti MT, Bagetta G, Rodinò P, Gratteri S, Nisticò G (1992) Neurotoxic effects induced by intracerebral and systemic injection of paraquat in rats. Hum Exp Toxicol 11(6):535–539

Article  CAS  PubMed  Google Scholar 

Corasaniti MT, Strongoli MC, Rotiroti D, Bagetta G, Nisticò G (1998) Paraquat: a useful tool for the in vivo study of mechanisms of neuronal cell death. Pharmacol Toxicol 83(1):1–7

Article  CAS  PubMed  Google Scholar 

Cristóvão AC, Choi D-H, Baltazar G, Beal MF, Kim Y-S (2009) The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antioxid Redox Signal 11(9):2105–2118

Article  PubMed  PubMed Central  Google Scholar 

Dehay B, Martinez-Vicente M, Caldwell GA, Caldwell KA, Yue Z, Cookson MR, Klein C, Vila M, Bezard E (2013) Lysosomal impairment in Parkinson’s disease. Mov Disord 28(6):725–732

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drechsel DA, Patel M (2008) Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Rad Biol Med 44(11):1873–1886

Article  CAS  PubMed  Google Scholar 

Fu Y, Buryanovskyy L, Zhang Z (2008) Quinone reductase 2 is a catechol quinone reductase. J Biol Chem 283(35):23829–23835

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzalez-Sepulveda M, Compte J, Cuadros T, Nicolau A, Guillard-Sirieix C, Peñuelas N, Lorente-Picon M, Parent A, Romero-Giménez J, Cladera-Sastre JM, Laguna A, Vila M (2023) In vivo reduction of age-dependent neuromelanin accumulation mitigates features of Parkinson’s disease. Brain 146(3):1040–1052

Article  PubMed  PubMed Central  Google Scholar 

Gould NL, Sharma V, Hleihil M, Kolatt Chandran S, David O, Edry E, Rosenblum K (2020) Dopamine-dependent QR2 pathway activation in CA1 interneurons enhances novel memory formation. J Neurosci 40(45):8698–8714

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gould NL, Scherer GR, Carvalho S, Shurrush K, Kayyal H, Edry E, Elkobi A, David O, Foqara M, Thakar D, Pavesi T, Sharma V, Walker M, Maitland M, Dym O, Albeck S, Peleg Y, Germain N, Babaev I, Sharir H, Lalzar M, Shklyar B, Hazut N, Khamaisy M, Lévesque M, Lajoie G, Avoli M, Amitai G, Lefker B, Subramanyam C, Shilton B, Barr H, Rosenblum K (2023) Specific quinone reductase 2 inhibitors reduce metabolic burden and reverse Alzheimer’s disease phenotype in mice. J Clin Invest 133:e162120

Article  PubMed  PubMed Central  Google Scholar 

Han X, Zhao S, Song H, Xu T, Fang Q, Hu G, Sun L (2021) Kaempferol alleviates LD-mitochondrial damage by promoting autophagy: Implications in Parkinson’s disease. Redox Biol 41:101911

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harada S, Fujii C, Hayashi A, Ohkoshi N (2001) An association between idiopathic Parkinson’s disease and polymorphisms of phase II detoxification enzymes: glutathione S-transferase M1 and quinone oxidoreductase 1 and 2. Biochem Biophys Res Commun 288(4):887–892

Article  CAS  PubMed  Google Scholar 

Hashimoto T, Nakai M (2011) Increased hippocampal quinone reductase 2 in Alzheimer’s disease. Neurosci Lett 502(1):10–12

Article  CAS  PubMed  Google Scholar 

Hirsch EC (1992) Why are nigral catecholaminergic neurons more vulnerable than other cells in Parkinson’s disease? Ann Neurol 32(Suppl):S88–S93

Article  CAS  PubMed  Google Scholar 

Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334(6180):345–348

Article  CAS  PubMed  Google Scholar 

Hirsch EC, Höglinger G, Rousselet E, Breidert T, Parain K, Feger J, Ruberg M, Prigent A, Cohen-Salmon C, Launay JM (2003) Animal models of Parkinson’s disease in rodents induced by toxins: an update. J Neural Transm Suppl 65:89–100

Article  Google Scholar 

Huang M, Bargues-Carot A, Riaz Z, Wickham H, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG (2022) Impact of environmental risk factors on mitochondrial dysfunction, neuroinflammation, protein misfolding, and oxidative stress in the etiopathogenesis of Parkinson’s Disease. Int J Mol Sci 23(18):10808

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaiswal AK (1994) Human NAD(P)H:quinone oxidoreductase2. Gene structure, activity, and tissue-specific expression. J Biol Chem 269(20):14502–14508

Article  CAS  PubMed  Google Scholar 

Janda E, Isidoro C, Carresi C, Mollace V (2012) Defective autophagy in Parkinson’s disease: role of oxidative stress. Mol Neurobiol 46(3):639–661

Article  CAS  PubMed  Google Scholar 

Janda E, Parafati M, Aprigliano S, Carresi C, Visalli V, Sacco I, Ventrice D, Mega T, Vadalá N, Rinaldi S, Musolino V, Palma E, Gratteri S, Rotiroti D, Mollace V (2013) The antidote effect of quinone oxidoreductase 2 inhibitor against paraquat-induced toxicity in vitro and in vivo. Br J Pharmacol 168(1):46–59

Article  CAS  PubMed  PubMed Central  Google Scholar 

Janda E, Lascala A, Carresi C, Parafati M, Aprigliano S, Russo V, Savoia C, Ziviani E, Musolino V, Morani F, Isidoro C, Mollace V (2015) Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in astrocytes via NQO2/quinone oxidoreductase 2: Implications for neuroprotection. Autophagy 11(7):1063–1080

Article  CAS  PubMed  PubMed Central  Google Scholar 

Janda E, Nepveu F, Calamini B, Ferry G, Boutin JA (2020) Molecular pharmacology of NRH: quinone oxidoreductase 2: a detoxifying enzyme acting as an undercover toxifying enzyme. Mol Pharmacol 98(5):620–633

Article  CAS  PubMed  Google Scholar 

Janda E, Martino C, Riillo C, Parafati M, Lascala A, Mollace V, Boutin JA (2021) Apigenin and luteolin regulate autophagy by targeting NRH-quinone oxidoreductase 2 in liver cells. Antioxidants (basel) 10(5):776

Article  CAS  PubMed  Google Scholar 

Janda E, Parafati M, Martino C, William JNG, Reybier K, Mollace V, Boutin JA (2023) Autophagy and neuroprotection in astrocytes exposed to 6-hydroxydopamine is negatively regulated by NQO2: a potential novel target in Parkinson’s disease. Sci Reports. https://doi.org/10.21203/rs.3.rs-2510273/v1

Article  Google Scholar 

Johannessen JN, Adams JD, Schuller HM, Bacon JP, Markey SP (1986) 1-methyl-4-phenylpyridine (MPP+) induces oxidative stress in the rodent. Life Sci 38(8):743–749

Article  CAS  PubMed  Google Scholar 

Kartik S, Pal R, Chaudhary MJ, Nath R, Kumar M, Binwal M, Bawankule DU (2023) Neuroprotective role of chloroquine via modulation of autophagy and neuroinflammation in MPTP-induced Parkinson’s disease. Inflammopharmacology 31(2):927–941

Article  CAS  PubMed  Google Scholar 

Kastner A, Hirsch EC, Herrero MT, Javoy-Agid F, Agid Y (1993) Immunocytochemical quantification of tyrosine hydroxylase at a cellular level in the mesencephalon of control subjects and patients with Parkinson’s and Alzheimer’s disease. J Neurochem 61(3):1024–1034

Article  CAS  PubMed  Google Scholar 

Kupsch A, Schmidt W, Gizatullina Z, Debska-Vielhaber G, Voges J, Striggow F, Panther P, Schwegler H, Heinze H-J, Vielhaber S, Gellerich FN (2014) 6-Hydroxydopamine impairs mitochondrial function in the rat model of Parkinson’s disease: respirometric, histological, and behavioral analyses. J Neural Transm (vienna) 121(10):1245–1257

Comments (0)

No login
gif