Identification of transcriptome characteristics of granulosa cells and the possible role of UBE2C in the pathogenesis of premature ovarian insufficiency

Webber L, Davies M, Anderson R, Bartlett J, Braat D, Cartwright B, Cifkova R, Keizer-Schrama SD, Hogervorst E, Janse F, Liao L, Vlaisavljevic V, et al. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31(5):926–37.

Article  CAS  PubMed  Google Scholar 

Coulam CB, Adamson SC, Annegers JF. Incidence of premature ovarian failure. Obstet Gynecol. 1986;67(4):604–6.

CAS  PubMed  Google Scholar 

Wu XY, Cai H, Kallianpur A, Li HL, Yang G, Gao J, Xiang YB, Ji BT, Yu-Tang, Zheng W, Shu XO. Impact of premature ovarian failure on mortality and morbidity among Chinese women. Plos One. 2014;9(3):e89597.

Dolmans MM. Recent advances in fertility preservation and counseling for female cancer patients. Expert Rev Anticanc. 2018;18(2):115–20.

Article  CAS  Google Scholar 

Mishra SR, Chung HF, Waller M, Mishra GD. Duration of estrogen exposure during reproductive years, age at menarche and age at menopause, and risk of cardiovascular disease events, all-cause and cardiovascular mortality: a systematic review and meta-analysis. Bjog-Int J Obstet Gy. 2021;128(5):809–21.

Article  CAS  Google Scholar 

Jacobsen BK, Heuch I, Kvale G. Age at natural menopause and all-cause mortality: A 37-year follow-up of 19,731 Norwegian women. Am J Epidemiol. 2003;157(10):923–9.

Article  PubMed  Google Scholar 

Mondul AM, Rodriguez C, Jacobs EJ, Calle EE. Age at natural menopause and cause-specific mortality. Am J Epidemiol. 2005;162(11):1089–97.

Article  PubMed  Google Scholar 

Mishra SR, Chung HF, Waller M, Mishra GD. Duration of estrogen exposure during reproductive years, age at menarche and age at menopause, and risk of cardiovascular disease events, all-cause and cardiovascular mortality: a systematic review and meta-analysis. BJOG. 2021;128(5):809–21.

Article  CAS  PubMed  Google Scholar 

Welt CK. Primary ovarian insufficiency: a more accurate term for premature ovarian failure. Clin Endocrinol (Oxf). 2008;68(4):499–509.

Article  PubMed  Google Scholar 

Persani L, Rossetti R, Cacciatore C, Fabre S. Genetic defects of ovarian TGF-beta-like factors and premature ovarian failure. J Endocrinol Invest. 2011;34(3):244–51.

Article  CAS  PubMed  Google Scholar 

Robles A, Checa MA, Prat M, Carreras R. Medical alternatives to oocyte donation in women with premature ovarian failure: a systematic review. Gynecol Endocrinol. 2013;29(7):632–7.

Article  PubMed  Google Scholar 

Jiao X, Qin CR, Li J, Qin YY, Gao X, Zhang B, Zhen XM, Feng Y, Simpson JL, Chen ZJ. Cytogenetic analysis of 531 Chinese women with premature ovarian failure. Hum Reprod. 2012;27(7):2201–7.

Article  CAS  PubMed  Google Scholar 

Qin YY, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21(6):787–808.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tucker EJ, Grover SR, Bachelot A, Touraine P, Sinclair AH. Premature ovarian insufficiency: new perspectives on genetic cause and phenotypic spectrum. Endocr Rev. 2016;37(6):609–35.

Article  PubMed  Google Scholar 

Nelson LM. Primary ovarian insufficiency. New Engl J Med. 2009;360(6):606–14.

Article  CAS  PubMed  Google Scholar 

Nuovo S, Passeri M, Di Benedetto E, Calanchini M, Meldolesi I, Di Giacomo MC, Petruzzi D, Piemontese MR, Zelante L, Sangiuolo F, Novelli G, Fabbri A, et al. Characterization of endocrine features and genotype-phenotypes correlations in blepharophimosis-ptosis-epicanthus inversus syndrome type 1. J Endocrinol Invest. 2016;39(2):227–33.

Article  CAS  PubMed  Google Scholar 

Huhtaniemi I, Hovatta O, La Marca A, Livera G, Monniaux D, Persani L, Heddar A, Jarzabek K, Laisk-Podar T, Salumets A, Tapanainen JS, Veitia RA, et al. Advances in the molecular pathophysiology, genetics, and treatment of primary ovarian insufficiency. Trends Endocrinol Metab. 2018;29(6):400–19.

Article  CAS  PubMed  Google Scholar 

Thomas FH, Vanderhyden BC. Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth. Reprod Biol Endocrin. 2006;4:19.

Dumesic DA, Abbott DH. Implications of polycystic ovary syndrome on oocyte development. Semin Reprod Med. 2008;26(1):53–61.

Li R, Albertini DF. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Bio. 2013;14(3):141–52.

Article  CAS  Google Scholar 

Gosden R, Lee B. Portrait of an oocyte: our obscure origin. J Clin Invest. 2010;120(4):973–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sugiura K, Eppig JJ. Society for reproductive biology founders’ lecture 2005 - control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes. Reprod Fert Develop. 2005;17(7):667–74.

Article  CAS  Google Scholar 

Tu J, Cheung AH, Chan CL, Chan WY. The role of microRNAs in ovarian granulosa cells in health and disease. Front Endocrinol (Lausanne). 2019;10:174.

Article  PubMed  Google Scholar 

Liu T, Li Q, Wang SW, Chen C, Zheng J. Transplantation of ovarian granulosa-like cells derived from human induced pluripotent stem cells for the treatment of murine premature ovarian failure. Mol Med Rep. 2016;13(6):5053–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beck-Peccoz P, Persani L. Premature ovarian failure. Orphanet J Rare Dis. 2006;1:9.

Article  PubMed  PubMed Central  Google Scholar 

Chapman C, Cree L, Shelling AN. The genetics of premature ovarian failure: current perspectives. Int J Womens Health. 2015;7:799–810.

PubMed  PubMed Central  Google Scholar 

Wilson C. Autoimmunity: autoimmune Addison disease and premature ovarian failure. Nat Rev Endocrinol. 2011;7(9):498.

PubMed  Google Scholar 

Weissenbruch MM, Hoek A, Vliet-Bleeker I, Schoemaker J, Drexhage H. Evidence for existence of immunoglobulins that block ovarian granulosa cell growth in vitro. A putative role in resistant ovary syndrome? J Clin Endocrinol Metab. 1991;73(2):360–7.

Article  PubMed  Google Scholar 

Field SL, Dasgupta T, Cummings M, Orsi NM. Cytokines in ovarian folliculogenesis, oocyte maturation and luteinisation. Mol Reprod Dev. 2014;81(4):284–314.

Article  CAS  PubMed  Google Scholar 

Yang X, Gilman-Sachs A, Kwak-Kim J. Ovarian and endometrial immunity during the ovarian cycle. J Reprod Immunol. 2019;133:7–14.

Article  CAS  PubMed  Google Scholar 

Sen A, Kushnir VA, Barad DH, Gleicher N. Endocrine autoimmune diseases and female infertility. Nat Rev Endocrinol. 2014;10(1):37–50.

Article  CAS  PubMed  Google Scholar 

Petrikova J, Lazurova I. Ovarian failure and polycystic ovary syndrome. Autoimmun Rev. 2012;11(6–7):A471–8.

Article  CAS  PubMed  Google Scholar 

Huang Y, Hu C, Ye H, Luo R, Fu X, Li X, Huang J, Chen W, Zheng Y. Inflamm-Aging: A new mechanism affecting premature ovarian insufficiency. J Immunol Res. 2019;2019:8069898.

Article  PubMed  PubMed Central  Google Scholar 

Dang Y, Wang X, Hao Y, Zhang X, Zhao S, Ma J, Qin Y, Chen ZJ. MicroRNA-379-5p is associate with biochemical premature ovarian insufficiency through PARP1 and XRCC6. Cell Death Dis. 2018;9(2):106.

Article  PubMed  PubMed Central  Google Scholar 

Li D, Wang X, Dang Y, Zhang X, Zhao S, Lu G, Chan WY, Leung PCK, Qin Y. lncRNA GCAT1 is involved in premature ovarian insufficiency by regulating p27 translation in GCs via competitive binding to PTBP1. Mol Ther Nucleic Acids. 2021;23:132–41.

Article  CAS  PubMed  Google Scholar 

Wang X, Zhang X, Dang Y, Li D, Lu G, Chan WY, Leung PCK, Zhao S, Qin Y, Chen ZJ. Long noncoding RNA HCP5 participates in premature ovarian insufficiency by transcriptionally regulating MSH5 and DNA damage repair via YB1. Nucleic Acids Res. 2020;48(8):4480–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li D, Xu W, Wang X, Dang Y, Xu L, Lu G, Chan WY, Leung PCK, Zhao S, Qin Y. lncRNA DDGC participates in premature ovarian insufficiency through regulating RAD51 and WT1. Mol Ther Nucleic Acids. 2021;26:1092–106.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang X, Dang Y, Liu R, Zhao S, Ma J, Qin Y. MicroRNA-127-5p impairs function of granulosa cells via HMGB2 gene in premature ovarian insufficiency. J Cell Physiol. 2020;235(11):8826–38.

Article  CAS  PubMed  Google Scholar 

Jia WC, Xu B, Wu J. Circular RNA expression profiles of mouse ovaries during postnatal development and the function of circular RNA epidermal growth factor receptor in granulosa cells. Metabolism. 2018;85:192–204.

Article  CAS  PubMed  Google Scholar 

Cai HC, Li YM, Li HM, Niringiyumukiza JD, Zhang MD, Chen L, Chen G, Xiang WP. Identification and characterization of human ovary-derived circular RNAs and their potential roles in ovarian aging. Aging-Us. 2018;10(9):2511–34.

Article 

Comments (0)

No login
gif