BIN1 in the Pursuit of Ousting the Alzheimer’s Reign: Impact on Amyloid and Tau Neuropathology

Adams SL et al (2016) Subcellular changes in bridging integrator 1 protein expression in the cerebral cortex during the progression of Alzheimer disease pathology. J Neuropathol Exp Neurol 75(8):779–790. https://doi.org/10.1093/jnen/nlw056

Almeida CG, Takahashi RH, Gouras GK (2006) Beta-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system. J Neurosci 26:4277–4288

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alzheimer’s Gene BIN1 Promotes Synaptic Transmission | ALZFORUM [Internet]. www.alzforum.org. 2020 [cited 2023 Oct 11]. Available from: https://www.alzforum.org/news/research-news/alzheimers-gene-bin1-promotes-synaptic-transmission

Andrew RJ, De Rossi P, Nguyen P et al (2019) Reduction of the expression of the late-onset Alzheimer’s disease (AD) risk-factor BIN1 does not affect amyloid pathology in an AD mouse model. J Biol Chem 294:4477–4487

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23

Article  CAS  PubMed  Google Scholar 

Betts MJ, Russell RB (2003) In: Barnes MR, Gray IC, eds. Bioinformatics for geneticists, John Wiley & Sons, Ltd, Chichester, UK: 289–316

Butler MH, David C, Ochoa GC et al (1997) Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of Ranvier in brain and around T tubules in skeletal muscle. J Cell Biol 137:1355–1367

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calafate S, Flavin W, Verstreken P, Moechars D (2016) Loss of bin1 promotes the propagation of tau pathology. Cell Rep 17:931–940

Article  CAS  PubMed  Google Scholar 

Casal E, Federici L, Zhang W et al (2006) The crystal structure of the BAR domain from human Bin1/ amphiphysin II and its implications for molecular recognition. Biochemistry 45:12917–12928

Article  CAS  PubMed  Google Scholar 

Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA (2000) Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 157:277–286

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen KV et al (2013a) Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry 18:1225–1234. https://doi.org/10.1038/mp.2013.1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chapuis J, Hansmannel F, Gistelinck M, Mounier A et al (2013b) Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry 18:1225–1234

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chapuis J et al (2013c) Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry 18:1225–1234

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chia PZC, Toh WH, Sharples R, Gasnereau I, Hill AF, Gleeson PA (2013) Intracellular itinerary of internalised β-secretase, BACE1, and its potential impact on β-amyloid peptide biogenesis. Traffic 14:997–1013

Article  CAS  PubMed  Google Scholar 

Cirrito JR, Kang JE, Lee J et al (2008) Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron 58:42–51

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Rossi P, Buggia-Prévot V et al (2016) Predominant expression of Alzheimer’s disease-associated BIN1 in mature oligodendrocytes and localization to white matter tracts. Mol Neurodegener 11:59

Article  PubMed  PubMed Central  Google Scholar 

De Rossi P, Buggia-Prévot V, Clayton BLL et al (2016) Predominant expression of Alzheimer’s disease-associated BIN1 in mature oligodendrocytes and localization to white matter tracts. Mol Neurodegener 11:59

Article  PubMed  PubMed Central  Google Scholar 

De Rossi P, Andrew RJ, Musial TF et al (2019) Aberrant accrual of BIN1 near Alzheimer’s disease amyloid deposits in transgenic models. Brain Pathol 29:485–501

Article  PubMed  Google Scholar 

Evergren E, Marcucci M et al (2004) Amphiphysin is a component of clathrin coats formed during synaptic vesicle recycling at the lamprey giant synapse. Traffic 5:514–528

Article  CAS  PubMed  Google Scholar 

Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S et al (2006a) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63:168–174. https://doi.org/10.1001/archpsyc.63.2.168

Article  PubMed  Google Scholar 

Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL (2006b) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63:168–174

Article  PubMed  Google Scholar 

Glennon EBC, Whitehouse IJ, Miners JS, Kehoe PG, Love S, Kellett KAB et al (2013) BIN1 is decreased in sporadic but not familial Alzheimer’s disease or in aging. PLoS ONE 8:e78806. https://doi.org/10.1371/journal.pone.0078806

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glennon EBC, Whitehouse IJ et al (2013) BIN1 is decreased in sporadic but not familial Alzheimer’s disease or in aging. PLoS ONE 8:e78806

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glennon EB, Lau DHW, Gabriele RMC et al (2020) Bridging integrator 1 protein loss in Alzheimer’s disease promotes synaptic tau accumulation and disrupts tau release. Brain Commun 2:fcaa011

Glennon EB, Lau DHW, Gabriele RMC et al (2020) Bridging integrator-1 protein loss in Alzheimer’s disease promotes synaptic tau accumulation and disrupts tau release. Brain Commun 2:fcaa011

Gouras GK, Willén K, Tampellini D (2012) Critical role of intraneuronal Aβ in Alzheimer’s disease: technical challenges in studying intracellular Aβ. Life Sci 91:1153–1158

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holler CJ, Davis PR et al (2014) Bridging integrator 1 (BIN1) protein expression increases in the Alzheimer’s disease brain and correlates with neurofibrillary tangle pathology. J Alzheimers Dis 42:1221–1227

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holler CJ, Davis PR, Beckett TL, Platt TL, Webb RL, Head E et al (2014) Bridging integrator 1 (BIN1) protein expression increases in the Alzheimer’s disease brain and correlates with neurofibrillary tangle pathology. J Alzheimer’s Dis 42:1221–1227. https://doi.org/10.3233/JAD-132450

Article  CAS  Google Scholar 

Holtzman DM, Morris JC, Goate AM (2011) Alzheimer’s disease: the challenge of the second century. Sci Transl Med 3:77sr71

Hu X, Pickering E, Liu YC, Hall S et al (2011) Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer’s disease. PLoS ONE 6:e16616

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karch CM, Jeng AT, Nowotny P et al (2012) Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS ONE 7:e50976

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karch CM, Goate AM (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77(1):43–51. https://doi.org/10.1016/j.biopsych.2014.05.006

Kim NY, Cho MH et al (2017) Sorting nexin-4 regulates β-amyloid production by modulating β-site-activating cleavage enzyme-1. Alzheimers Res Ther 9:4

Article  PubMed  PubMed Central  Google Scholar 

Knobloch M, Konietzko U, Krebs DC, Nitsch RM (2007) Intracellular Abeta and cognitive deficits precede beta-amyloid deposition in transgenic arcAbeta mice. Neurobiol Aging 28:1297–1306

Article  CAS  PubMed  Google Scholar 

Koo EH, Squazzo SL (1994) Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J Biol Chem 269:17386–17389

Article  CAS  PubMed  Google Scholar 

Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leprince C, Le Scolan E et al (2003) Sorting nexin 4 and amphiphysin 2, a new partnership between endocytosis and intracellular trafficking. J Cell Sci 116:1937–1948

Article  CAS  PubMed  Google Scholar 

Liu G, Zhang S, Cai Z, Li Y, Cui L, Ma G, Jiang Y, Zhang L, Feng R, Liao M, Chen Z, Zhao B, Li K (2013) BIN1 gene rs744373 polymorphism contributes to Alzheimer’s disease in East Asian population. Neurosci Lett 544:47–51

Article  CAS  PubMed  Google Scholar 

Marques-Coelho D, Iohan L da CC, Melo de Farias AR, Flaig A, Letournel F, Martin-Négrier ML et al (2021) Differential transcript usage unravels gene expression alterations in Alzheimer’s disease human brains. NPJ Aging Mech Dis 7. https://doi.org/10.1038/s41514-020-00052-5

Maxfield FR, McGraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5:121–132

Article  CAS  PubMed  Google Scholar 

Mayer BJ, Eck MJ (1995) SH3 domains. Minding your p’s and q’s. Curr Biol 5:364–367

Morais VA, Leight S, Pijak DS et al (2008) Cellular localization of nicastrin affects amyloid beta species production. FEBS Lett 582:427–433

Comments (0)

No login
gif