Staunton J, Weissman KJ. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 2001;18:380–416.
Article CAS PubMed Google Scholar
Weng WY, Li RD, Zhang YX, Pan XF, Jiang SC, et al. Polyketides isolated from an endophyte Penicillium oxalicum 2021CDF-3 inhibit pancreatic tumor growth. Front. Microbiol. 2022;13:1–9.
Liu T, Zhang SY, Li ZL, Wang Y, Chen ZX, et al. A new polyketide, penicillolide from the marinederived fungus Penicillium sacculum. Nat. Prod. Res. 2016;30:1025–9.
Article CAS PubMed Google Scholar
Mahmoud MM, Abdel-Razek AS, Hamed A, Soliman HSM, Ponomareva LV, et al. RF-3192C and other polyketides from the marine endophytic Aspergillus niger ASSB4: structure assignment and bioactivity investigation. Med. Chem. Res. 2021;30:647–54.
Lai CR, Chen JY, Liu J, Tian DM, Lan DH, et al. New polyketides from a hydrothermal vent sediment fungus Trichoderma sp. JWM29-10-1 and their antimicrobial effects. Mar. Drugs. 2022;20:720.
Article CAS PubMed PubMed Central Google Scholar
Sun Y, Tian L, Huang J, Ma HY, Zheng Z, et al. Trichodermatides A−D, Novel polyketides from the marine-derived fungus Trichoderma reesei. Org. Lett. 2008;10:393–6.
Article CAS PubMed Google Scholar
Wei H, Itoh T, Kotoku N, Kobayashi M. Shimalactiones neuritogenic polyketides from a marine-derived fungus Emericella variecolor GF10. Heterocycles. 2006;68:111–23.
Suzuki T, Ariefta NR, Koseki T, Furuno H, Kwon E, et al. New polyketides, paralactonic acids A–E produced by Paraconiothyrium sp. SW-B-1, an endophytic fungus associated with a seaweed, Chondrus ocellatus Holmes. Fitoterapia. 2019;132:75–81.
Article CAS PubMed Google Scholar
Lei H, Lei J, Zhou XF, Hu M, Niu H, et al. Cytotoxic polyketides from the marine sponge-derived fungus Pestalotiopsis heterocornis XWS03F09. Molecules. 2019;24:2655.
Article CAS PubMed PubMed Central Google Scholar
Mohamed IE, Gross H, Pontius A, Kehraus S, Krick A, et al. Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp. Org. Lett. 2009;11:5014–7.
Article CAS PubMed Google Scholar
Niu SW, Tang XX, Fan ZW, Xia JM, Xie CL, Yang XW, et al. Polyketides from the marine-derived fungus Fusarium solani H918. Mar. Drugs. 2019;17:125.
Article CAS PubMed PubMed Central Google Scholar
Liu YF, Zhang YH, Shao CL, Cao F, Wang CY. Microketides A and B, polyketides from a gorgonian-derived Microsphaeropsis sp. Fungus. J. Nat. Prod. 2020;83:1300–4.
Article CAS PubMed Google Scholar
Gou XS, Tian DM, Wei JH, Ma YH, Zhang YX, et al. New drimane sesquiterpenes and polyketides from marine-derived fungus Penicillium sp. TW58-16 and their anti-inflammatory and α-Glucosidase inhibitory effect. Mar. Drugs. 2021;19:416.
Article CAS PubMed PubMed Central Google Scholar
Zhang YH, Du HF, Cao WB, Li W, Cao F, Wang CY. Anti-inflammatory polyketides from the marine-derived fungus Eutypella scoparia. Mar. Drugs. 2022;20:486.
Article CAS PubMed PubMed Central Google Scholar
Wang JF, Zhao BB, Yi YT, Zhang W, Wu X, Zhang LR, et al. Mycoepoxydiene, a fungal polyketide inhibits MCF-7 cells through simultaneously targeting p53 and NF-kB pathways. Biochem. Pharmacol. 2012;84:891–899.
Article CAS PubMed Google Scholar
Zhang DH, Li XG, Kang JS, Choi HD, Jung JH, Son BW. Redoxcitrinin, a biogenetic precursor of citrinin from marine isolate of Fungus Penicillium sp. J. Microbiol. Biotechnol. 2007;17:865–867.
Bao J, Sun YL, Zhang XY, Han Z, Gao HC, He F, et al. Antifouling and antibacterial polyketides from marine gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023. J. Antibiot. 2013;66:219–23.
Niu SW, Liu QM, Xia JM, Xie CL, Luo ZH, et al. Polyketides from the deep-sea-derived fungus Graphostroma sp. MCCC 3A00421 showed potent antifood allergic activities. J. Agric. Food Chem. 2018;66:1369–76.
Article CAS PubMed Google Scholar
Meng LH, Li XM, Zhang FZ, Wang YN, Wang BG, Talascortenes A−G. Highly oxygenated diterpenoid acids from the sea-anemone-derived endozoic fungus Talaromyces scorteus AS-242. J. Nat. Prod. 2020;83:2528–36.
Article CAS PubMed Google Scholar
Li HL, Li XM, Li X, Wang CY, Liu H, et al. Antioxidant hydroanthraquinones from the marine algal-derived endophytic fungus Talaromyces islandicus EN-501. J. Nat. Prod. 2017;80:162–68.
Zhang FZ, Li XM, Yang SQ, Meng LH, Wang BG. Thiocladospolides A−D, 12-Membered macrolides from the mangrove-derived endophytic fungus Cladosporium cladosporioides MA-299 and Structure Revision of Pandangolide 3. J. Nat. Prod. 2019;82:1535–41.
Article CAS PubMed Google Scholar
Wang Y, Li XM, Yang SQ, Zhang FZ, Wang BG, Li HL, et al. Sesquiterpene and sorbicillinoid glycosides from the endophytic Fungus Trichoderma longibrachiatum EN-586 derived from the marine red Alga Laurencia obtusa. Mar. Drugs. 2022;20:177.
Article CAS PubMed PubMed Central Google Scholar
Li YH, Yang SQ, Li XM, Li X, Wang BG, Li HL. Cyclopiumolides A and B, unusual 13-membered macrolides from the deep sea-sourced fungus Penicillium cyclopium SD-413 with antiproliferative activities. Bioorg. Chem. 2022;128:106104.
Article CAS PubMed Google Scholar
Zhao Y, Sun CX, Huang LY, Zhang X, Zhang G,J, et al. Talarodrides A−F, nonadrides from the antarctic sponge-derived Fungus Talaromyces sp. HDN1820200. J. Nat. Prod. 2021;84:3011–3019.
Article CAS PubMed Google Scholar
Spencer P, Agnelli F, Sulikowski GA. Investigations into the production and interconversion of phomoidrides A−D. Org. Lett. 2001;3:1443–1445.
Article CAS PubMed Google Scholar
Grimblat N, Zanardi MM, Sarotti AM. Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem. 2015;80:12526–34.
Article CAS PubMed Google Scholar
Abdou R, Scherlach K, Dahse HM, Sattler I, Hertweck C. Botryorhodines A–D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa. Phytochemistry. 2010;71:110–16.
Article CAS PubMed Google Scholar
Crystallographic data of compounds 1 and 3 have been deposited in the Cambridge Crystallographic Data Centre as CCDC 2162966 (for 1), and CCDC 2162965 (for 3). These data can be obtained free of charge via https://www.ccdc.cam.ac.uk/MyStructures/ (or from the CCDC, 12 Union Road, Cambridge CB21EZ, U.K.; fax: + 44-1223-336-033; email: hello@ccdc.cam.ac.uk).
Sheldrick GM, SADABS, Software for Empirical Absorption Correction; University of Gottingen: Gottingen, Germany, 1996.
Sheldrick GM, SHELXL, Structure Determination Software Programs; Bruker Analytical X-ray System Inc. Madison, WI, USA, 1997.
Sheldrick GM, SHELXL, Program for the Refinement of Crystal Structures; University of Gottingen: Gottingen, Germany, 2014.
Parsons S, Flack HD, Wagner T. Acta. Crystallogr B. Use of intensity quotients and differences in absolute structure refinement. Struct. Sci. Cryst. Eng. Mater. 2013;B69:249–59.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. Gaussian 09, Revision D.01. Gaussian, Inc. Wallingford, UK, 2013.
Pierce CG, Uppuluri P, Tristan AR, Wormley FL, Mowat E, Ramage G, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat. Protoc. 2008;3:1494–1500.
Comments (0)