Bougakov D, Podell K, Goldberg E. Multiple neuroinvasive pathways in COVID-19. Mol Neurobiol. 2021;58(2):564–75. https://doi.org/10.1007/s12035-020-02152-5.
Article CAS PubMed Google Scholar
Harapan BN, Yoo HJ. Neurological symptoms, manifestations, and complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19). J Neurol. 2021;268(9):3059–71. https://doi.org/10.1007/s00415-021-10406-y.
Article CAS PubMed PubMed Central Google Scholar
Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, Mushumba H, Fitzek A, Allweiss L, Dandri M, Dottermusch M, Heinemann A, Pfefferle S, Schwabenland M, Sumner Magruder D, Bonn S, Prinz M, Gerloff C, Püschel K, Glatzel M. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19(11):919–29. https://doi.org/10.1016/S1474-4422(20)30308-2.
Article CAS PubMed PubMed Central Google Scholar
Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, Laue M, Schneider J, Brünink S, Greuel S, Lehmann M, Hassan O, Aschman T, Schumann E, Chua RL, Conrad C, Eils R, Stenzel W, Windgassen M, Heppner FL. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24(2):168–75. https://doi.org/10.1038/s41593-020-00758-5.
Article CAS PubMed Google Scholar
Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, Chilla S, Heinemann A, Wanner N, Liu S, Braun F, Lu S, Pfefferle S, Schröder AS, Edler C, Gross O, Glatzel M, Wichmann D, Wiech T, Huber TB. Multiorgan and renal tropism of SARS-CoV-2. New Engld J Med. 2020;383(6):590–2. https://doi.org/10.1056/NEJMc2011400.
Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, Lu P, Weizman O-E, Liu F, Dai Y, Szigeti-Buck K, Yasumoto Y, Wang G, Castaldi C, Heltke J, Ng E, Wheeler J, Alfajaro MM, Levavasseur E, Iwasaki A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Experim Med. 2021. https://doi.org/10.1084/jem.20202135.
Krasemann S, Haferkamp U, Pfefferle S, Woo MS, Heinrich F, Schweizer M, Appelt-Menzel A, Cubukova A, Barenberg J, Leu J, Hartmann K, Thies E, Littau JL, Sepulveda-Falla D, Zhang L, Ton K, Liang Y, Matschke J, Ricklefs F, Pless O. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Rep. 2022;17(2):307–20. https://doi.org/10.1016/j.stemcr.2021.12.011.
Boldrini M, Canoll PD, Klein RS. How COVID-19 affects the brain. JAMA Psychiat. 2021;78(6):682. https://doi.org/10.1001/jamapsychiatry.2021.0500.
Burks SM, Rosas-Hernandez H, Alejandro Ramirez-Lee M, Cuevas E, Talpos JC. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? Brain Behav Immun. 2021;95:7–14. https://doi.org/10.1016/j.bbi.2020.12.031.
Article CAS PubMed PubMed Central Google Scholar
Perlman S, Evans G, Afifi A. Effect of olfactory bulb ablation on spread of a neurotropic coronavirus into the mouse brain. J Exp Med. 1990;172(4):1127–32. https://doi.org/10.1084/jem.172.4.1127.
Article CAS PubMed Google Scholar
Cowley TJ, Weiss SR. Murine coronavirus neuropathogenesis: determinants of virulence. J Neurovirol. 2010;16(6):427–34. https://doi.org/10.1007/BF03210848.
Article CAS PubMed PubMed Central Google Scholar
Cheng Q, Yang Y, Gao J. Infectivity of human coronavirus in the brain. EBioMedicine. 2020;56:102799. https://doi.org/10.1016/j.ebiom.2020.102799.
Article PubMed PubMed Central Google Scholar
Andrade AC, dos SP, Campolina-Silva GH, Queiroz-Junior CM, de Oliveira LC, Lacerda L de SB, Gaggino JCP, de Souza FRO, de Meira Chaves I, Passos IB, Teixeira DC, Bittencourt-Silva PG, Valadão PAC, Rossi-Oliveira L, Antunes MM, Figueiredo AFA, Wnuk NT, Temerozo JR, Ferreira AC, Cramer A, Costa VV (2021) A biosafety level 2 mouse model for studying betacoronavirus-induced acute lung damage and systemic manifestations. J Virol https://doi.org/10.1128/JVI.01276-21
Reza-Zaldívar EE, Hernández-Sapiéns MA, Minjarez B, Gómez-Pinedo U, Márquez-Aguirre AL, Mateos-Díaz JC, Matias-Guiu J, Canales-Aguirre AA. Infection mechanism of SARS-COV-2 and its implication on the nervous system. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2020.621735.
Article PubMed PubMed Central Google Scholar
Weiss SR, Leibowitz JL (2011) Coronavirus Pathogenesis (pp. 85–164). https://doi.org/10.1016/B978-0-12-385885-6.00009-2
Garcia AB, de Moraes AP, Rodrigues DM, Gilioli R, de Oliveira-Filho EF, Durães-Carvalho R, Arns CW. Coding-complete genome sequence of murine hepatitis virus strain 3 from Brazil. Microbiol Resour Announc. 2021. https://doi.org/10.1128/MRA.00248-21.
Article PubMed PubMed Central Google Scholar
Amaral DC, Rachid MA, Vilela MC, Campos RD, Ferreira GP, Rodrigues DH, Lacerda-Queiroz N, Miranda AS, Costa VV, Campos MA, Kroon EG, Teixeira MM, Teixeira AL. Intracerebral infection with dengue-3 virus induces meningoencephalitis and behavioral changes that precede lethality in mice. J Neuroinflamm. 2011;8(1):23. https://doi.org/10.1186/1742-2094-8-23.
Costa VV, Del Sarto JL, Rocha RF, Silva FR, Doria JG, Olmo IG, Marques RE, Queiroz-Junior CM, Foureaux G, Araújo JMS, Cramer A, Real ALCV, Ribeiro LS, Sardi SI, Ferreira AJ, Machado FS, de Oliveira AC, Teixeira AL, Nakaya HI, Teixeira MM. N -Methyl-d-Aspartate (NMDA) receptor blockade prevents neuronal death induced by Zika virus infection. MBio. 2017. https://doi.org/10.1128/mBio.00350-17.
Article PubMed PubMed Central Google Scholar
Dunkley PR, Heath JW, Harrison SM, Jarvie PE, Glenfield PJ, Rostas JAP. A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions. Brain Res. 1988;441(1–2):59–71. https://doi.org/10.1016/0006-8993(88)91383-2.
Article CAS PubMed Google Scholar
Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985;260(6):3440–50.
Article CAS PubMed Google Scholar
Nicholls DG, Sihra TS, Sanchez-Prieto J. Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry. J Neurochem. 1987;49(1):50–7. https://doi.org/10.1111/j.1471-4159.1987.tb03393.x.
Article CAS PubMed Google Scholar
Rodrigues HA, de Fonseca MC, Camargo WL, Lima PMA, Martinelli PM, Naves LA, Prado VF, Prado MAM, Guatimosim C. Reduced expression of the vesicular acetylcholine transporter and neurotransmitter content affects synaptic vesicle distribution and shape in mouse neuromuscular junction. PLoS One. 2013;8(11): e78342. https://doi.org/10.1371/journal.pone.0078342.
Article CAS PubMed PubMed Central Google Scholar
Esposito Z, Belli L, Toniolo S, Sancesario G, Bianconi C, Martorana A. Amyloid β, glutamate, excitotoxicity in Alzheimer’s Disease: are we on the right track? CNS Neurosci Ther. 2013;19(8):549–55. https://doi.org/10.1111/cns.12095.
Article CAS PubMed PubMed Central Google Scholar
Mody I. NMDA receptor-dependent excitotoxicity: the role of intracellular Ca2+ release. Trends Pharmacol Sci. 1995;16(10):356–9. https://doi.org/10.1016/S0165-6147(00)89070-7.
Article CAS PubMed Google Scholar
Prediger RDS, Aguiar AS, Rojas-Mayorquin AE, Figueiredo CP, Matheus FC, Ginestet L, Chevarin C, Bel ED, Mongeau R, Hamon M, Lanfumey L, Raisman-Vozari R. Single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice models early preclinical phase of Parkinson’s disease. Neurotox Res. 2010;17(2):114–29. https://doi.org/10.1007/s12640-009-9087-0.
Article CAS PubMed Google Scholar
Oliveira TPD, Gonçalves BDC, Oliveira BS, de Oliveira ACP, Reis HJ, Ferreira CN, Aguiar DC, de Miranda AS, Ribeiro FM, Vieira EML, Palotás A, Vieira LB. Negative modulation of the metabotropic glutamate receptor type 5 as a potential therapeutic strategy in obesity and binge-like eating behavior. Front Neurosci. 2021. https://doi.org/10.3389/fnins.2021.631311.
Article PubMed PubMed Central Google Scholar
Camargos QM, Silva BC, Silva DG, Toscano ECB, Oliveira BS, Bellozi PMQ, Jardim BLO, Vieira ÉLM, de Oliveira ACP, Sousa LP, Teixeira AL, de Miranda AS, Rachid MA. Minocycline treatment prevents depression and anxiety-like behaviors and promotes neuroprotection after experimental ischemic stroke. Brain Res Bull. 2020;155:1–10. https://doi.org/10.1016/j.brainresbull.2019.11.009.
Article CAS PubMed Google Scholar
de Miranda AS, Brant F, Vieira LB, Rocha NP, Vieira ÉLM, Rezende GHS, de Oliveira Pimentel PM, Moraes MFD, Ribeiro FM, Ransohoff RM, Teixeira MM, Machado FS, Rachid MA, Teixeira AL. A neuroprotective effect of the glutamate receptor antagonist MK801 on long-term cognitive and behavioral outcomes secondary to experimental cerebral malaria. Mol Neurobiol. 2017;54(9):7063–82. https://doi.org/10.1007/s12035-016-0226-3.
Article CAS PubMed Google Scholar
Eltokhi A, Kurpiers B, Pitzer C. Baseline depression-like behaviors in wild-type adolescent mice are strain and age but not sex dependent. Front Behav Neurosci. 2021. https://doi.org/10.3389/fnbeh.2021.759574.
Article PubMed PubMed Central Google Scholar
Davis HE, Assaf GS, McCorkell L, Wei H, Low RJ, Re’em Y, Redfield S, Austin JP, Akrami A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021. https://doi.org/10.1016/j.eclinm.2021.101019.
Article PubMed PubMed Central Google Scholar
WHO Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int/.
Gorska AM, Eugenin EA. The glutamate system as a crucial regulator of CNS toxicity and survival of HIV reservoirs. Front Cell Infect Microbiol. 2020. https://doi.org/10.3389/fcimb.2020.00261.
Article PubMed PubMed Central Google Scholar
Brison E, Jacomy H, Desforges M, Talbot PJ. Glutamate excitotoxicity is involved in the induction of paralysis in mice after infection by a human coronavirus with a single point mutation in its spike protein. J Virol. 2011;85(23):12464–73. https://doi.org/10.1128/JVI.05576-11.
Comments (0)