Anderson, S. T., Commins, S., Moynagh, P. N., & Coogan, A. N. (2015). Lipopolysaccharide-induced sepsis induces long-lasting affective changes in the mouse. Brain, Behavior, and Immunity, 43, 98–109. https://doi.org/10.1016/j.bbi.2014.07.007
Article CAS PubMed Google Scholar
Bruck, E., Schandl, A., Bottai, M., & Sackey, P. (2018). The impact of sepsis, delirium, and psychological distress on self-rated cognitive function in ICU survivors-a prospective cohort study. Journal of Intensive Care, 6, 2. https://doi.org/10.1186/s40560-017-0272-6
Article PubMed PubMed Central Google Scholar
Calsavara, A. J. C., Costa, P. A., Nobre, V., & Teixeira, A. L. (2018). Factors associated with short and long term cognitive changes in patients with sepsis. Scientific Reports, 8(1), 4509. https://doi.org/10.1038/s41598-018-22754-3
Article CAS PubMed PubMed Central Google Scholar
Cao, P., Chen, C., Liu, A., Shan, Q., Zhu, X., Jia, C., Peng, X., Zhang, M., Farzinpour, Z., Zhou, W., & Wang, H. (2021). Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines. Neuron, 109(16), 2573-2589e2579. https://doi.org/10.1016/j.neuron.2021.06.012
Article CAS PubMed Google Scholar
Cherry, J. D., Olschowka, J. A., & O’Banion, M. K. (2014). Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. Journal of Neuroinflammation, 11, 98. https://doi.org/10.1186/1742-2094-11-98
Article CAS PubMed PubMed Central Google Scholar
Colton, C. A. (2009). Heterogeneity of microglial activation in the innate immune response in the brain. Journal of Neuroimmune Pharmacology: The Official Journal of the Society on Neuroimmune Pharmacology, 4(4), 399–418. https://doi.org/10.1007/s11481-009-9164-4
Croft, M. (2009). The role of TNF superfamily members in T-cell function and diseases. Nature Reviews Immunology, 9(4), 271–285. https://doi.org/10.1038/nri2526
Article CAS PubMed PubMed Central Google Scholar
Etxeberria, I., Glez-Vaz, J., Teijeira, A., & Melero, I. (2020). New emerging targets in cancer immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open, 4(Suppl 3), e000733. https://doi.org/10.1136/esmoopen-2020-000733
Article PubMed PubMed Central Google Scholar
Fleischmann-Struzek, C., Mellhammar, L., Rose, N., Cassini, A., Rudd, K. E., Schlattmann, P., Allegranzi, B., & Reinhart, K. (2020). Incidence and mortality of hospital-and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis. Intensive Care Medicine, 46(8), 1552–1562. https://doi.org/10.1007/s00134-020-06151-x
Article CAS PubMed PubMed Central Google Scholar
Gofton, T. E., & Young, G. B. (2012). Sepsis-associated encephalopathy. Nature Reviews Neurology, 8(10), 557–566. https://doi.org/10.1038/nrneurol.2012.183
Article CAS PubMed Google Scholar
Han, Z., Zhao, H., Tao, Z., Wang, R., Fan, Z., Luo, Y., Luo, Y., & Ji, X. (2018). TOPK promotes microglia/macrophage polarization towards M2 phenotype via inhibition of HDAC1 and HDAC2 activity after transient cerebral ischemia. Aging and Disease, 9(2), 235–248. https://doi.org/10.14336/AD.2017.0328
Article PubMed PubMed Central Google Scholar
Helbing, D. L., Bohm, L., & Witte, O. W. (2018). Sepsis-associated encephalopathy. Cmaj, 190(36), E1083. https://doi.org/10.1503/cmaj.180454
Article PubMed PubMed Central Google Scholar
Hsiao, K. K., Borchelt, D. R., Olson, K., Johannsdottir, R., Kitt, C., Yunis, W., Xu, S., Eckman, C., Younkin, S., Price, D., & Iadecola, C. (1995). Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron, 15(5), 1203–1218. https://doi.org/10.1016/0896-6273(95)90107-8
Article CAS PubMed Google Scholar
Jin, X., & Yamashita, T. (2016). Microglia in central nervous system repair after injury. The journal of Biochemistry, 159(5), 491–496. https://doi.org/10.1093/jb/mvw009
Article CAS PubMed Google Scholar
Kang, Y. J., Kim, S. O., Shimada, S., Otsuka, M., Seit-Nebi, A., Kwon, B. S., Watts, T. H., & Han, J. (2007). Cell surface 4-1BBL mediates sequential signaling pathways “downstream” of TLR and is required for sustained TNF production in macrophages. Nature Immunology, 8(6), 601–609. https://doi.org/10.1038/ni1471
Article CAS PubMed Google Scholar
Kim, C. Y., Lee, G. Y., Park, G. H., Lee, J., & Jang, J. H. (2014). Protective Effect of arabinoxylan against scopolamine-induced learning and memory impairment. Biomolecules & Therapeutics (Seoul), 22(5), 467–473. https://doi.org/10.4062/biomolther.2014.063
Kim, J. D., Lee, E. A., Quang, N. N., Cho, H. R., & Kwon, B. (2011). Recombinant TAT-CD137 ligand cytoplasmic domain fusion protein induces the production of IL-6 and TNF-alpha in peritoneal macrophages. Immune Network, 11(4), 216–222. https://doi.org/10.4110/in.2011.11.4.216
Article PubMed PubMed Central Google Scholar
Lemstra, A. W., & Groen in’t, Woud, J. C., Hoozemans, J. J., van Haastert, E. S., Rozemuller, A. J., Eikelenboom, P. (2007). Microglia activation in sepsis: a case-control study. Journal of Neuroinflammation, 4, 4. https://doi.org/10.1186/1742-2094-4-4
Article CAS PubMed PubMed Central Google Scholar
Li, Y., Ji, M., & Yang, J. (2022). Current understanding of long-term cognitive impairment after sepsis. Frontiers in Immunology, 13, 855006. https://doi.org/10.3389/fimmu.2022.855006
Article CAS PubMed PubMed Central Google Scholar
Li, Y., Yin, L., Fan, Z., Su, B., Chen, Y., Ma, Y., Zhong, Y., Hou, W., Fang, Z., & Zhang, X. (2020). Microglia: a potential therapeutic target for sepsis-associated encephalopathy and sepsis-associated chronic pain. Frontiers in Pharmacology, 11, 600421. https://doi.org/10.3389/fphar.2020.600421
Article CAS PubMed PubMed Central Google Scholar
Ma, J., Bang, B. R., Lu, J., Eun, S. Y., Otsuka, M., Croft, M., Tobias, P., Han, J., Takeuchi, O., Akira, S., & Karin, M. (2013). The TNF family member 4–1BBL sustains inflammation by interacting with TLR signaling components during late-phase activation. Science Signaling, 6(295), ra87. https://doi.org/10.1126/scisignal.2004431
Article CAS PubMed PubMed Central Google Scholar
Mak, A., Dharmadhikari, B., Kow, N. Y., Thamboo, T. P., Tang, Q., Wong, L. W., Sajikumar, S., Wong, H. Y., & Schwarz, H. (2019). Deletion of CD137 ligand exacerbates renal and cutaneous but alleviates cerebral manifestations in lupus. Frontiers in Immunology, 10, 1411. https://doi.org/10.3389/fimmu.2019.01411
Article CAS PubMed PubMed Central Google Scholar
Manabe, T., & Heneka, M. T. (2022). Cerebral dysfunctions caused by sepsis during ageing. Nature Reviews Immunology, 22(7), 444–458. https://doi.org/10.1038/s41577-021-00643-7
Article CAS PubMed Google Scholar
Mbanwi, A. N., Lin, G. H. Y., Wang, K. C., & Watts, T. H. (2017). Constitutive interaction between 4-1BB and 4-1BBL on murine LPS-activated bone marrow dendritic cells masks detection of 4-1BBL by TKS-1 but not 19H3 antibody. Journal of Immunological Methods, 450, 81–89. https://doi.org/10.1016/j.jim.2017.08.001
Article CAS PubMed Google Scholar
Nguyen, Q. T., Ju, S. A., Park, S. M., Lee, S. C., Yagita, H., Lee, I. H., & Kim, B. S. (2009). Blockade of CD137 signaling counteracts polymicrobial sepsis induced by cecal ligation and puncture. Infection and Immunity, 77(9), 3932–3938. https://doi.org/10.1128/IAI.00407-09
Article CAS PubMed PubMed Central Google Scholar
Osterhout, J. A., Kapoor, V., Eichhorn, S. W., Vaughn, E., Moore, J. D., Liu, D., Lee, D., DeNardo, L. A., Luo, L., Zhuang, X., & Dulac, C. (2022). A preoptic neuronal population controls fever and appetite during sickness. Nature, 606(7916), 937–944. https://doi.org/10.1038/s41586-022-04793-z
Article CAS PubMed PubMed Central Google Scholar
Ren, C., Yao, R. Q., Zhang, H., Feng, Y. W., & Yao, Y. M. (2020). Sepsis-associated encephalopathy: a vicious cycle of immunosuppression. Journal of Neuroinflammation, 17(1), 14. https://doi.org/10.1186/s12974-020-1701-3
Article CAS PubMed PubMed Central Google Scholar
Schwalm, M. T., Pasquali, M., Miguel, S. P., Dos Santos, J. P. A., Vuolo, F., Comim, C. M., Petronilho, F., Quevedo, J., Gelain, D. P., Moreira, J. C. F., & Ritter, C. (2014). Acute brain inflammation and oxidative damage are related to long-term cognitive deficits and markers of neurodegeneration in sepsis-survivor rats. Molecular Neurobiology, 49, 380–385. https://doi.org/10.1007/s12035-013-8526-3
Article CAS PubMed Google Scholar
Semmler, A., Widmann, C. N., Okulla, T., Urbach, H., Kaiser, M., Widman, G., Mormann, F., Weide, J., Fliessbach, K., Hoeft, A., Jessen, F., Putensen, C., & Heneka, M. T. (2013). Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. Journal of Neurology, Neurosurgery and Psychiatry, 84(1), 62–69. https://doi.org/10.1136/jnnp-2012-302883
Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G. R., Chiche, J.-D., Coopersmith, C. M., Hotchkiss, R. S., Levy, M. M., Marshall, J. C., Martin, G. S., Opal, S. M., Rubenfeld, G. D., Poll, T., Vincent, J.-L., & Angus, D. C. (2016). The third international consensus definitions for sepsis and septic shock (sepsis-3). Journal of The American Medical Association, 315(8), 801–810. https://doi.org/10.1001/jama.2016.0287
Comments (0)