He K, Sun J (2015) Convolutional neural networks at constrained time cost. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5353–5360
Qiao S, Lin Z, Zhang J, Yuille A L (2019) Neural rejuvenation: improving deep network training by enhancing computational resource utilization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 61–71
Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587
Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp. 1440–1448
Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in neural information processing systems, vol. 28, pp. 91–99
Sugimori H, Kawakami M (2019) Automatic detection of a standard line for brain magnetic resonance imaging using deep learning. In: Applied Sciences, vol. 9, 3849
Yang X, Tang WT, Tjio G, Yeo SY, Su Y (2020) Automatic detection of anatomical landmarks in brain MR scanning using multi-task deep neural networks. In: Neurocomputing, vol. 396, pp. 514–521
Gohel B, Kumar L, Shah D (2023) Deep learning-based automated localisation of anterior commissure and posterior commissure landmarks in 3d space from three-plane 2d mri localiser slices of the brain. In: Procedia Computer Science, vol. 218, pp. 1027–1032
Baxter JS, Bui QA, Maguet E, Croci S, Delmas A, Lefaucheur J-P, Bredoux L, Jannin P (2021) Automatic cortical target point localisation in MRI for transcranial magnetic stimulation via a multi-resolution convolutional neural network. In: International Journal of Computer Assisted Radiology and Surgery, vol. 16, pp.1077–1087
Foulsham T, Chapman C, Nasiopoulos E, Kingstone A (2014) Top-down and bottom-up aspects of active search in a real-world environment. In: Canadian Journal of Experimental Psychology, vol. 68, pp. 8–19
Li S, Gong Q, Li H, Chen S, Liu Y, Ruan G, Zhu L, Liu L, Chen H (2022) Automatic location scheme of anatomical landmarks in 3d head MRI based on the scale attention hourglass network. Comput Methods Progr Biomed 214:106564
Lester H, Arridge SR (1999) A survey of hierarchical non-linear medical image registration. Pattern Recogn 32(1):129–149
Lefaucheur J-P (2019) Transcranial magnetic stimulation. Handb Clin Neurol 160:559–580
Balconi M (2013) Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques. Neurosci Bull 29:381–389
Article PubMed PubMed Central Google Scholar
Hamid P, Malik BH, Hussain ML (2019) Noninvasive transcranial magnetic stimulation (TMS) in chronic refractory pain: a systematic review. Cureus 11(10):e6019
PubMed PubMed Central Google Scholar
Sparing R, Buelte D, Meister IG, Pauš T, Fink GR (2008) Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Hum Brain Mapp 29(1):82–96
Siebner HR, Hartwigsen G, Kassuba T, Rothwell JC (2009) How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex 45(9):1035–1042
Article PubMed PubMed Central Google Scholar
Middlebrooks E, Domingo R, Vivas-Buitrago T, Okromelidze L, Tsuboi T, Wong J, Eisinger R, Almeida L, Burns M, Horn A et al (2020) Neuroimaging advances in deep brain stimulation: review of indications, anatomy, and brain connectomics. Am J Neuroradiol 41(9):1558–1568
Baxter JS, Jannin P (2023) Validation in the age of machine learning: a framework for describing validation with examples in transcranial magnetic stimulation and deep brain stimulation. Intell. -Based Med. 7:100090
Haegelen C, Coupé P, Fonov V, Guizard N, Jannin P, Morandi X, Collins DL (2013) Automated segmentation of basal ganglia and deep brain structures in MRI of Parkinson’s disease. Int J Comput Assist Radiol Surg 8(1):99–110
Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440
Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention-MICCAI, 18th International Conference, Munich, Proceedings, Part III 18. Springer 2015, pp. 234–241
Ranftl R, Bochkovskiy A, Koltun V (2021) Vision transformers for dense prediction. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 12 179–12 188
Hatamizadeh A, Nath V, Tang Y, Yang D, Roth HR, Xu D (2021) Swin unetr: swin transformers for semantic segmentation of brain tumors in MRI images. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries: 7th international workshop, BrainLes. Held in Conjunction with MICCAI 2021, Virtual Event, Revised Selected Papers. Part I. Springer 2022:272–284
Baxter JS, Jannin P (2022) Combining simple interactivity and machine learning: a separable deep learning approach to subthalamic nucleus localization and segmentation in MRI for deep brain stimulation surgical planning. J Med Imaging 9(4):045001
Comments (0)