Bates JH, Stead WW. The history of tuberculosis as a global epidemic. Med Clin North Am. 1993;77:1205–17.
Article CAS PubMed Google Scholar
WHO. Global Tuberculosis Report 2020 – World. ReliefWeb. 2020;1–232.
World Health Organization. Global Tuberculosis Report 2021. Geneva: ©World Health Organization; 2021. p 57.
Gengenbacher M, Kaufmann SHE. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev. 2012;36:514–32.
Article CAS PubMed Google Scholar
Trutneva KA, Shleeva MO, Demina GR, Vostroknutova GN, Kaprelyans AS. One-year old dormant, “non-culturable” Mycobacterium tuberculosis preserves significantly diverse protein profile. Front Cell Infect Microbiol. 2020;10:26.
Article CAS PubMed PubMed Central Google Scholar
Wayne LG, Sohaskey CD. Nonreplicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol. 2001;55:139–63.
Article CAS PubMed Google Scholar
Gopinath V, Raghunandanan S, Gomez RL, Jose L, Surendran A, Ramachandran R, et al. Profiling the proteome of Mycobacterium tuberculosis during dormancy and reactivation. Mol Cell Proteom. 2015;14:2160–76.
Wayne LG, Hayes LG. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun. 1996;64:2062–9.
Article CAS PubMed PubMed Central Google Scholar
Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, et al. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol. 2008;69:164–74.
Article CAS PubMed PubMed Central Google Scholar
Flentie K, Harrison GA, Tükenmez H, Livny J, Good JAD, Sarkar S, et al. Chemical disarming of isoniazid resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2019;116:10510–7.
Article CAS PubMed PubMed Central Google Scholar
Voskuil MI, Bartek IL, Visconti K, Schoolnik GK. The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front Microbiol. 2011;2:105.
Article CAS PubMed PubMed Central Google Scholar
Deb C, Lee C-M, Dubey VS, Daniel J, Abomoelak B, Sirakova TD, et al. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One. 2009;4:e6077.
Article PubMed PubMed Central Google Scholar
Shastri MD, Shukla SD, Chong WC, Dua K, Peterson GM, Patel RP, et al. Role of oxidative stress in the pathology and management of human tuberculosis. Oxid Med Cell Longev. 2018;2018:7695364.
Li G, Zhang J, Guo Q, Jiang Y, Wei J, Zhao LL, et al. Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates. PLoS One. 2015;10:e0119013.
Article PubMed PubMed Central Google Scholar
Bhandol H, Alindogan J, De Guzman A, Lim R. Review: Structure and transcriptional regulation of the Acr efflux pumps and their role in antibiotic resistance in Escherichia coli. Undergrad J Exp Microbiol Immunol. 2020;6:1–16.
Liu J, Shi W, Zhang S, Hao X, Maslov DA, Shur KV, et al. Mutations in efflux pump Rv1258c (Tap) cause resistance to pyrazinamide, isoniazid, and streptomycin in M. tuberculosis. Front Microbiol. 2019;10:216.
Article PubMed PubMed Central Google Scholar
Liu H, Yang M, He Z-G. Novel TetR family transcriptional factor regulates expression of multiple transport-related genes and affects rifampicin resistance in Mycobacterium smegmatis. Sci Rep. 2016;6:27489.
Article CAS PubMed PubMed Central Google Scholar
Remm S, Earp JC, Dick T, Dartois V, Seeger MA. Critical discussion on drug efflux in Mycobacterium tuberculosis. FEMS Microbiol Rev. 2022;46:fuab050.
Balhana RJC, Singla A, Sikder MH, Withers M, Kendall SL. Global analyses of TetR family transcriptional regulators in mycobacteria indicates conservation across species and diversity in regulated functions. BMC Genomics. 2015;16:1–12.
Luo L, Zhu L, Yue J, Liu J, Liu G, Zhang X, et al. Antigens Rv0310c and Rv1255c are promising novel biomarkers for the diagnosis of Mycobacterium tuberculosis infection. Emerg Microbes Infect. 2017;6:1–8.
Rustad TR, Harrell MI, Liao R, Sherman DR. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One. 2008;3:e1502.
Article PubMed PubMed Central Google Scholar
Sun X, Zhang L, Jiang J, Ng M, Cui Z, Mai J, et al. Transcription factors Rv0081 and Rv3334 connect the early and the enduring hypoxic response of Mycobacterium tuberculosis. Virulence. 2018;9:1468.
Article CAS PubMed PubMed Central Google Scholar
Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, Sweet L, et al. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature. 2013;499:178–83.
Article CAS PubMed PubMed Central Google Scholar
Martin A, Camacho M, Portaels F, Palomino JC. Resazurin microtiter assay plate testing of Mycobacterium tuberculosis susceptibilities to second-line drugs: rapid, simple, and inexpensive method. Antimicrob Agents Chemother. 2003;47:3616.
Article CAS PubMed PubMed Central Google Scholar
Pal S, Misra A, Banerjee S, Dam B. Adaptation of ethidium bromide fluorescence assay to monitor activity of efflux pumps in bacterial pure cultures or mixed population from environmental samples. J King Saud Univ Sci. 2020;32:939–45.
Valdivia RH, Hromockyj AE, Monack D, Ramakrishnan L, Falkow S. Applications for green fluorescent protein (GFP) in the study of host-pathogen interactions. Gene. 1996;173:47–52.
Jose L, Ramachandran R, Bhagavat R, Gomez RL, Chandran A, Raghunandanan S, et al. Hypothetical protein Rv3423.1 of Mycobacterium tuberculosis is a histone acetyltransferase. FEBS J. 2016;283:265–81.
Article CAS PubMed Google Scholar
Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE. Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinforma. 2006;7:1–10.
Engohang-Ndong J, Baillat D, Aumercier M, Bellefontaine F, Besra GS, Locht C, et al. EthR, a repressor of the TetR/CamR family implicated in ethionamide resistance in mycobacteria, octamerizes cooperatively on its operator. Mol Microbiol. 2004;51:175–88.
Article CAS PubMed Google Scholar
Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, et al. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev. 2005;69:326–56.
Article CAS PubMed PubMed Central Google Scholar
Bollela VR, Namburete EI, Feliciano CS, Macheque D, Harrison LH, Caminero JA. Detection of katG and inhA mutations to guide isoniazid and ethionamide use for drug-resistant tuberculosis. Int J Tuberc Lung Dis. 2016;20:1099.
Article CAS PubMed Google Scholar
Ai JW, Ruan QL, Liu QH, Zhang WH. Updates on the risk factors for latent tuberculosis reactivation and their managements. Emerg Microbes Infect. 2016;5:e10.
Article CAS PubMed PubMed Central Google Scholar
Gomez RL, Jose L, Ramachandran R, Raghunandanan S, Muralikrishnan B, Johnson JB, et al. The multiple stress responsive transcriptional regulator Rv3334 of Mycobacterium tuberculosis is an autorepressor and a positive regulator of kstR. FEBS J. 2016;283:3056–71.
Article CAS PubMed Google Scholar
Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tube Lung Dis. 1998;79:3–29.
Gao CH, Wei WP, Tao HL, Cai LK, Jia WZ, Hu L, et al. Cross-talk between the three furA orthologs in Mycobacterium smegmatis and the contribution to isoniazid resistance. J Biochem. 2019;166:237–43.
Article CAS PubMed Google Scholar
Barozi V, Musyoka TM, Sheik Amamuddy O, Tastan Bishop Ö. Deciphering isoniazid drug resistance mechanisms on dimeric Mycobacterium tuberculosis KatG via post-molecular dynamics analyses including combined dynamic residue network metrics. ACS Omega. 2022;7:13313–32.
Comments (0)