Alaee S, Asadollahpour R, Hosseinzadeh Colagar A, Talaei-Khozani T (2021) The decellularized ovary as a potential scaffold for maturation of preantral ovarian follicles of prepubertal mice. Syst Biol Reprod Med 67:413–427. https://doi.org/10.1080/19396368.2021.1968542
Article CAS PubMed Google Scholar
Alshaikh AB, Padma AM, Dehlin M, Akouri R, Song MJ, Brännström M, Hellström M (2019) Decellularization of the mouse ovary: comparison of different scaffold generation protocols for future ovarian bioengineering. J Ovarian Res 12:58. https://doi.org/10.1186/s13048-019-0531-3
Article CAS PubMed PubMed Central Google Scholar
Arapaki A, Christopoulos P, Kalampokas E, Triantafyllidou O, Matsas A, Vlahos NF (2022) Ovarian tissue cryopreservation in children and adolescents. Child (Basel) 9:1256. https://doi.org/10.3390/children9081256
Buckenmeyer MJ, Sukhwani M, Iftikhar A, Nolfi AL, Xian Z, Dadi S, Case ZW, Steimer SR, D’Amore A, Orwig KE, Brown BN (2020) Bioengineering an in situ ovary (ISO) for fertility preservation. bioRxiv. https://doi.org/10.1101/2020.01.03.893941
Canovas S, Campos R, Aguilar E, Cibelli JB (2017) Progress towards human primordial germ cell specification in vitro. Mol Hum Reprod 23:4–15. https://doi.org/10.1093/molehr/gaw069
Article CAS PubMed Google Scholar
Chen J, Torres-de la Roche LA, Kahlert UD, Isachenko V, Huang H, Hennefründ J, Yan X, Chen Q, Shi W, Li Y (2022) Artificial ovary for young female breast cancer patients. Front Med (Lausanne) 9:837022. https://doi.org/10.3389/fmed.2022.837022
Chiti MC, Vanacker J, Ouni E, Tatic N, Viswanath A, Des Rieux A, Dolmans MM, White LJ, Amorim CA (2022) Ovarian extracellular matrix-based hydrogel for human ovarian follicle survival in vivo: a pilot work. J Biomed Mater Res B Appl Biomater 110:1012–1022. https://doi.org/10.1002/jbm.b.34974
Article CAS PubMed Google Scholar
Cho E, Kim YY, Noh K, Ku SY (2019) A new possibility in fertility preservation: the artificial ovary. J Tissue Eng Regen Med 13:1294–1315. https://doi.org/10.1002/term.2870
Article CAS PubMed Google Scholar
Clarkson YL, McLaughlin M, Waterfall M, Dunlop CE, Skehel PA, Anderson RA, Telfer EE (2018) Initial characterisation of adult human ovarian cell populations isolated by DDX4 expression and aldehyde dehydrogenase activity. Sci Rep 8:6953. https://doi.org/10.1038/s41598-018-25116-1
Article CAS PubMed PubMed Central Google Scholar
De Castro FC, Cruz MHC, Leal CLV (2016) Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility-A review. Asian-Australas J Anim Sci 29:1065–1074. https://doi.org/10.5713/ajas.15.0797
Article CAS PubMed Google Scholar
Dolmans M-M, Luyckx V, Donnez J, Andersen CY, Greve T (2013) Risk of transferring malignant cells with transplanted frozen-thawed ovarian tissue. Fertil Steril 99:1514–1522. https://doi.org/10.1016/j.fertnstert.2013.03.027
Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531–535. https://doi.org/10.1038/383531a0
Article CAS PubMed Google Scholar
Eivazkhani F, Abtahi NS, Tavana S, Mirzaeian L, Abedi F, Ebrahimi B, Montazeri L, Valojerdi MR, Fathi R (2019) Evaluating two ovarian decellularization methods in three species. Mater Sci Eng C Mater Biol Appl 102:670–682. https://doi.org/10.1016/j.msec.2019.04.092
Article CAS PubMed Google Scholar
Elvin JA, Yan C, Wang P, Nishimori K, Matzuk MM (1999) Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol 13:1018–1034. https://doi.org/10.1210/mend.13.6.0309
Article CAS PubMed Google Scholar
Eppig JJ, Wigglesworth K (2000) Development of mouse and rat oocytes in chimeric reaggregated ovaries after interspecific exchange of somatic and germ cell components. Biol Reprod 63:1014–1023. https://doi.org/10.1095/biolreprod63.4.1014
Article CAS PubMed Google Scholar
Gittens JE, Barr KJ, Vanderhyden BC, Kidder GM (2005) Interplay between paracrine signaling and gap junctional communication in ovarian follicles. Cell Sci 118:113–122. https://doi.org/10.1242/jcs.01587
Hassanpour A, Talaei-Khozani T, Kargar-Abarghouei E, Razban V, Vojdani Z (2018) Decellularized human ovarian scaffold based on a sodium lauryl ester sulfate (SLES)-treated protocol, as a natural three-dimensional scaffold for construction of bioengineered ovaries. Stem Cell Res Ther 9:252. https://doi.org/10.1186/s13287-018-0971-5
Article CAS PubMed PubMed Central Google Scholar
Hoekman EJ, Louwe LA, Rooijers M, van der Westerlaken LAJ, Klijn NF, Pilgram GSK, de Kroon CD, Hilders CGJM (2020) Ovarian tissue cryopreservation: low usage rates and high live-birth rate after transplantation. Acta Obstet Gynecol Scand 99:213–221. https://doi.org/10.1111/aogs.13735
Huntriss J, Hinkins M, Picton HM (2006) cDNA cloning and expression of the human NOBOX gene in oocytes and ovarian follicles. Mol Hum Reprod 12:283–289. https://doi.org/10.1093/molehr/gal035
Article CAS PubMed Google Scholar
Jakus AE, Laronda MM, Rashedi AS, Robinson CM, Lee C, Jordan SW, Orwig KE, Woodruff TK, Shah RN (2017) Tissue Papers from organ-specific decellularized extracellular matrices. Adv Funct Mater 27:1700992. https://doi.org/10.1002/adfm.201700992
Article CAS PubMed PubMed Central Google Scholar
Kinnear HM, Tomaszewski CE, Chang FL, Moravek MB, Xu M, Padmanabhan V, Shikanov A (2020) The ovarian stroma as a new frontier. Reproduction 160:R25–R39. https://doi.org/10.1530/REP-19-0501
Article CAS PubMed PubMed Central Google Scholar
Laronda MM, Jakus AE, Whelan KA, Wertheim JA, Shah RN, Woodruff TK (2015) Initiation of puberty in mice following decellularized ovary transplant. Biomaterials 50:20–29. https://doi.org/10.1016/j.biomaterials.2015.01.051
Article CAS PubMed PubMed Central Google Scholar
Lei L, Zhang H, Jin S, Wang F, Fu M, Wang H, Xia G (2006) Stage-specific germ‐somatic cell interaction directs the primordial folliculogenesis in mouse fetal ovaries. J Cell Physiol 208:640–647. https://doi.org/10.1002/jcp.20702
Article CAS PubMed Google Scholar
Liu W-Y, Lin S-G, Zhuo R-Y, Xie Y-Y, Pan W, Lin X-F, Shen FX (2017) Xenogeneic decellularized scaffold: a novel platform for ovary regeneration. Tissue Eng Part C Methods 23:61–71. https://doi.org/10.1089/ten.TEC.2016.0410
Article PubMed PubMed Central Google Scholar
Medrano JV, Ramathal C, Nguyen HN, Simon C, Reijo Pera RA (2012) Divergent RNA-binding proteins, DAZL and VASA, induce meiotic progression in human germ cells derived in vitro. Stem Cells 30:441–451. https://doi.org/10.1002/stem.1012
Article CAS PubMed Google Scholar
Monti M, Redi C (2009) Oogenesis specific genes (Nobox, Oct4, Bmp15, Gdf9, Oogenesin1 and Oogenesin2) are differentially expressed during natural and gonadotropin-induced mouse follicular development. Mol Reprod Dev 76:994–1003. https://doi.org/10.1002/mrd.21059
Article CAS PubMed Google Scholar
Nagyová E, Němcová L, Camaioni A (2021) Cumulus extracellular matrix is an important part of oocyte microenvironment in ovarian follicles: its remodeling and proteolytic degradation. Int J Mol Sci 23:54. https://doi.org/10.3390/ijms23010054
Article CAS PubMed PubMed Central Google Scholar
Nikniaz H, Zandieh Z, Nouri M, Daei-Farshbaf N, Aflatoonian R, Gholipourmalekabadi M, Jameie SB (2021) Comparing various protocols of human and bovine ovarian tissue decellularization to prepare extracellular matrix-alginate scaffold for better follicle development in vitro. BMC Biotechnol 21:1–8. https://doi.org/10.1186/s12896-020-00658-3
Park E-S, Tilly JL (2015) Use of DEAD-box polypeptide-4 (Ddx4) gene promoter-driven fluorescent reporter mice to identify mitotically active germ cells in post-natal mouse ovaries. Mol Hum Reprod 21:58–65. https://doi.org/10.1093/molehr/gau071
Article CAS PubMed Google Scholar
Rodrigues P, Limback D, McGinnis L, Marques M, Aibar J, Plancha CE (2021) Germ–somatic cell interactions are involved in establishing the follicle reserve in mammals. Front Cell Dev Biol 9:674137. https://doi.org/10.3389/fcell.2021.674137
Article PubMed PubMed Central Google Scholar
Pors S, Ramløse M, Nikiforov D, Lundsgaard K, Cheng J, Andersen CY, Kristensen SG (2019) Initial steps in reconstruction of the human ovary: survival of pre-antral stage follicles in a decellularized human ovarian scaffold. Hum Reprod 34:1523–1535. https://doi.org/10.1093/humrep/dez077
Article CAS PubMed Google Scholar
Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM (2004) NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 305:1157–1159. https://doi.org/10.1126/science.1099755
Article CAS PubMed Google Scholar
Simon AM, Goodenough DA, Li E, Paul DL (1997) Female infertility in mice lacking connexin 37. Nature 385:525–529. https://doi.org/10.1038/385525a0
Comments (0)