Hacherl CC, Patel NA, Jones K et al (2021) Characterizing adverse events of cranioplasty implants after craniectomy: a retrospective review of the federal manufacturer and user facility device experience database. Cureus 13(7):e16795. https://doi.org/10.7759/cureus.16795
Wang L, Yang CC, Sun CN et al (2022) Fused deposition modeling PEEK implants for personalized surgical application: from clinical need to biofabrication. Int J Bioprint 8(4):615. https://doi.org/10.18063/ijb.v8i4.615
Kauke-Navarro M, Knoedler L, Knoedler S et al (2024) Surface modification of PEEK implants for craniofacial reconstruction and aesthetic augmentation-fiction or reality? Front Surg 11:1351749. https://doi.org/10.3389/fsurg.2024.1351749
Sakkas A, Wilde F, Heufelder M et al (2017) Autogenous bone grafts in oral implantology—is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent 3(1):23. https://doi.org/10.1186/s40729-017-0084-4
Panayotov IV, Orti V, Cuisinier F et al (2016) Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med 27(7):118. https://doi.org/10.1007/s10856-016-5731-4
Zheng Z, Liu PJ, Zhang XM et al (2022) Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater Today Bio 16:100402. https://doi.org/10.1016/j.mtbio.2022.100402
Bartelstein MK, Van Citters DW, Weiser MC et al (2017) Failure of a polyaryletheretherketone-cobalt-chromium composite femoral stem due to coating separation and subsidence: a case report. JBJS Case Connect 7(4):e83. https://doi.org/10.2106/jbjs.Cc.16.00280
Evans NT, Torstrick FB, Lee CSD et al (2015) High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Acta Biomater 13:159–167. https://doi.org/10.1016/j.actbio.2014.11.030
Yang Q, Zhang GC, Ma ZL et al (2015) Effects of processing parameters and thermal history on microcellular foaming behaviors of PEEK using supercritical CO2. J Appl Polym Sci 132(39):42576. https://doi.org/10.1002/app.42576
Zhao Y, Wong HM, Wang WH et al (2013) Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials 34(37):9264–9277. https://doi.org/10.1016/j.biomaterials.2013.08.071
Zheng JB, Zhao HY, Dong EC et al (2021) Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility. Mater Sci Eng C Mater Biol Appl 128:112333. https://doi.org/10.1016/j.msec.2021.112333
Wang HZ, Chen P, Wu HZ et al (2022) Comparative evaluation of printability and compression properties of poly-ether-ether-ketone triply periodic minimal surface scaffolds fabricated by laser powder bed fusion. Addit Manuf 57:102961. https://doi.org/10.1016/j.addma.2022.102961
Azami M, Moztarzadeh F, Tahriri M (2010) Preparation, characterization and mechanical properties of controlled porous gelatin/hydroxyapatite nanocomposite through layer solvent casting combined with freeze-drying and lamination techniques. J Porous Mater 17(3):313–320. https://doi.org/10.1007/s10934-009-9294-3
Gummadi SK, Saini A, Owusu-Danquah JS et al (2022) Mechanical properties of 3D-printed porous poly-ether-ether-ketone (PEEK) orthopedic scaffolds. JOM 74(9):3379–3391. https://doi.org/10.1007/s11837-022-05361-6
Du XY, Ronayne S, Lee SS et al (2023) 3D-printed PEEK/silicon nitride scaffolds with a triply periodic minimal surface structure for spinal fusion implants. ACS Appl Bio Mater 6(8):3319–3329. https://doi.org/10.1021/acsabm.3c00383
Spece H, Yu T, Law AW et al (2020) 3D printed porous PEEK created via fused filament fabrication for osteoconductive orthopaedic surfaces. J Mech Behav Biomed Mater 109:103850. https://doi.org/10.1016/j.jmbbm.2020.103850
Jia CQ, Zhang Z, Cao SQ et al (2023) A biomimetic gradient porous cage with a micro-structure for enhancing mechanical properties and accelerating osseointegration in spinal fusion. Bioact Mater 23:234–246. https://doi.org/10.1016/j.bioactmat.2022.11.003
Roskies M, Jordan JO, Fang DD et al (2016) Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells. J Biomater Appl 31(1):132–139. https://doi.org/10.1177/0885328216638636
Cowin SC, Moss-Salentijn L, Moss ML (1991) Candidates for the mechanosensory system in bone. J Biomech Eng 113(2):191–197. https://doi.org/10.1115/1.2891234
Patel K, Brandstetter K (2016) Solid implants in facial plastic surgery: potential complications and how to prevent them. Facial Plast Surg 32(5):520–531. https://doi.org/10.1055/s-0036-1586497
Lee TY, Chung HY, Dhong ES et al (2019) Paranasal augmentation using multi-folded expanded polytetrafluorethylene (ePTFE) in the East Asian nose. Aesthet Surg J 39(12):1319–1328. https://doi.org/10.1093/asj/sjz103
Nocini PF, Boccieri A, Bertossi D (2009) Gridplan midfacial analysis for alloplastic implants at the time of jaw surgery. Plast Reconstr Surg 123(2):670–679. https://doi.org/10.1097/PRS.0b013e318196b958
Kang JF, Zhang J, Zheng JB et al (2021) 3D-printed PEEK implant for mandibular defects repair-a new method. J Mech Behav Biomed Mater 116:104335. https://doi.org/10.1016/j.jmbbm.2021.104335
Wang L, Kang JF, Sun CN et al (2017) Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants. Mater Des 133:62–68. https://doi.org/10.1016/j.matdes.2017.07.021
Sun CN, Wang L, Kang JF et al (2018) Biomechanical optimization of elastic modulus distribution in porous femoral stem for artificial hip joints. J Bionic Eng 15(4):693–702. https://doi.org/10.1007/s42235-018-0057-1
Wang D, Qu A, Zhou H et al (2016) Biomechanical analysis of the application of zygoma implants for prosthesis in unilateral maxillary defect. J Mech Med Biol 16(8):1640030. https://doi.org/10.1142/s0219519416400303
Miyamoto S, Ujigawa K, Kizu Y et al (2010) Biomechanical three-dimensional finite-element analysis of maxillary prostheses with implants. Design of number and position of implants for maxillary prostheses after hemimaxillectomy. Int J Oral Maxillofac Surg 39(11):1120–1126. https://doi.org/10.1016/j.ijom.2010.06.011
Zhang J, Li DC, Liu YJ et al (2022) Application of patient-specific PEEK implant for aesthetic considerations in paranasal augmentation. J Craniofac Surg 33(8):e877–e880. https://doi.org/10.1097/scs.0000000000008824
Monje A, Ravidà A, Wang HL et al (2019) Relationship between primary/mechanical and secondary/biological implant stability. Int J Oral Maxillofac Implants 34:s7–s23. https://doi.org/10.11607/jomi.19suppl.g1
Sharma N, Welker D, Aghlmandi S et al (2021) A multi-criteria assessment strategy for 3D printed porous polyetheretherketone (PEEK) patient-specific implants for orbital wall reconstruction. J Clin Med 10(16):3563. https://doi.org/10.3390/jcm10163563
Torstrick FB, Safranski DL, Burkus JK et al (2017) Getting PEEK to stick to bone: the development of porous PEEK for interbody fusion devices. Tech Orthop 32(3):158–166. https://doi.org/10.1097/bto.0000000000000242
Moiduddin K, Mian SH, Elseufy SM et al (2023) Polyether-etherketone (PEEK) and its 3D-printed quantitate assessment in cranial reconstruction. J Funct Biomater 14(8):429. https://doi.org/10.3390/jfb14080429
Belwanshi M, Jayaswal P, Aherwar A (2022) Mechanical behaviour investigation of PEEK coated titanium alloys for hip arthroplasty using finite element analysis. Mater Today Proc 56(5):2808–2817. https://doi.org/10.1016/j.matpr.2021.10.112
Kang JF, Wang L, Yang CC et al (2018) Custom design and biomechanical analysis of 3D-printed PEEK rib prostheses. Biomech Model Mechanobiol 17(4):1083–1092. https://doi.org/10.1007/s10237-018-1015-x
Bružauskaitė I, Bironaitė D, Bagdonas E et al (2016) Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology 68(3):355–369. https://doi.org/10.1007/s10616-015-9895-4
Taniguchi N, Fujibayashi S, Takemoto M et al (2016) Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl 59:690–701. https://doi.org/10.1016/j.msec.2015.10.069
Fukuda A, Takemoto M, Saito T et al (2011) Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater 7(5):2327–2336. https://doi.org/10.1016/j.actbio.2011.01.037
Bai F, Zhang JK, Wang Z et al (2011) The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo. Biomed Mater 6(1):015007. https://doi.org/10.1088/1748-6041/6/1/015007
Zadpoor AA (2015) Bone tissue regeneration: the role of scaffold geometry. Biomater Sci 3(2):231–245. https://doi.org/10.1039/c4bm00291a
Nune KC, Kumar A, Misra RDK et al (2017) Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing. Colloids Surf B Biointerfaces 150:78–88. https://doi.org/10.1016/j.colsurfb.2016.09.050
Zheng JB, Zhao HY, Ouyang ZC et al (2022) Additively-manufactured PEEK/HA porous scaffolds with excellent osteogenesis for bone tissue repairing. Compos Part B Eng 232:109508. https://doi.org/10.1016/j.compositesb.2021.109508
Gómez S, Vlad MD, López J et al (2016) Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomater 42:341–350. https://doi.org/10.1016/j.actbio.2016.06.032
Lu SW, Zhang BN, Niu JY et al (2024) Effect of fiber content on mechanical properties of carbon fiber-reinforced polyether-ether-ketone composites prepared using screw extrusion-based online mixing 3D printing. Addit Manuf 80:103976. https://doi.org/10.1016/j.addma.2024.103976
Comments (0)