Dick, J. E. (2008). Stem cell concepts renew cancer research. Blood, 112(13), 4793–4807. https://doi.org/10.1182/blood-2008-08-077941.
Article CAS PubMed Google Scholar
Visvader, J. E., & Lindeman, G. J. (2012). Cancer stem cells: Current status and evolving complexities. Cell Stem Cell, 10(6), 717–728. https://doi.org/10.1016/j.stem.2012.05.007.
Article CAS PubMed Google Scholar
Kreso, A., & Dick, J. E. (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14(3), 275–291. https://doi.org/10.1016/j.stem.2014.02.006.
Article CAS PubMed Google Scholar
Bayik, D., & Lathia, J. D. (2021). Cancer stem cell-immune cell crosstalk in tumour progression. Nature Reviews Cancer, 21(8), 526–536. https://doi.org/10.1038/s41568-021-00366-w.
Article CAS PubMed PubMed Central Google Scholar
Wainwright, E. N., & Scaffidi, P. (2017). Epigenetics and Cancer Stem cells: Unleashing, hijacking, and restricting Cellular plasticity. Trends Cancer, 3(5), 372–386. https://doi.org/10.1016/j.trecan.2017.04.004.
Article CAS PubMed PubMed Central Google Scholar
Hope, K. J., Jin, L., & Dick, J. E. (2004). Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunology, 5(7), 738–743. https://doi.org/10.1038/ni1080.
Article CAS PubMed Google Scholar
Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737. https://doi.org/10.1038/nm0797-730.
Article CAS PubMed Google Scholar
Kreso, A., van Galen, P., Pedley, N. M., Lima-Fernandes, E., Frelin, C., Davis, T., Cao, L., Baiazitov, R., Du, W., Sydorenko, N., Moon, Y. C., Gibson, L., Wang, Y., Leung, C., Iscove, N. N., Arrowsmith, C. H., Szentgyorgyi, E., Gallinger, S., Dick, J. E., & O’Brien, C. A. (2014). Self-renewal as a therapeutic target in human colorectal cancer. Nature Medicine, 20(1), 29–36. https://doi.org/10.1038/nm.3418.
Article CAS PubMed Google Scholar
de Sousa e Melo, F., Kurtova, A. V., Harnoss, J. M., Kljavin, N., Hoeck, J. D., Hung, J., Anderson, J. E., Storm, E. E., Modrusan, Z., Koeppen, H., Dijkgraaf, G. J., Piskol, R., & de Sauvage, F. J. (2017). A distinct role for Lgr5(+) stem cells in primary and metastatic colon cancer. Nature, 543(7647), 676–680. https://doi.org/10.1038/nature21713.
Article CAS PubMed Google Scholar
Boyd, A. L., Aslostovar, L., Reid, J., Ye, W., Tanasijevic, B., Porras, D. P., Shapovalova, Z., Almakadi, M., Foley, R., Leber, B., Xenocostas, A., & Bhatia, M. (2018). Identification of Chemotherapy-Induced Leukemic-Regenerating cells reveals a transient vulnerability of human AML recurrence. Cancer Cell, 34(3), 483–498e485. https://doi.org/10.1016/j.ccell.2018.08.007.
Article CAS PubMed Google Scholar
Shimokawa, M., Ohta, Y., Nishikori, S., Matano, M., Takano, A., Fujii, M., Date, S., Sugimoto, S., Kanai, T., & Sato, T. (2017). Visualization and targeting of LGR5. Nature, 545(7653), 187–192. https://doi.org/10.1038/nature22081.
Article CAS PubMed Google Scholar
Basu, S., Dong, Y., Kumar, R., Jeter, C., & Tang, D. G. (2022). Slow-cycling (dormant) cancer cells in therapy resistance, cancer relapse and metastasis. Semin Cancer Biol, 78, 90–103. https://doi.org/10.1016/j.semcancer.2021.04.021.
Article CAS PubMed Google Scholar
Blasco, M. T., Espuny, I., & Gomis, R. R. (2022). Ecology and evolution of dormant metastasis. Trends Cancer, 8(7), 570–582. https://doi.org/10.1016/j.trecan.2022.03.002.
Article CAS PubMed Google Scholar
Toh, T. B., Lim, J. J., & Chow, E. K. (2017). Epigenetics in cancer stem cells. Molecular Cancer, 16(1), 29. https://doi.org/10.1186/s12943-017-0596-9.
Article CAS PubMed PubMed Central Google Scholar
Bergin, C. J., Zouggar, A., Haebe, J. R., Masibag, A. N., Desrochers, F. M., Reilley, S. Y., Agrawal, G., & Benoit, Y. D. (2021). G9a controls pluripotent-like identity and tumor-initiating function in human colorectal cancer. Oncogene, 40(6), 1191–1202. https://doi.org/10.1038/s41388-020-01591-7.
Article CAS PubMed Google Scholar
Haebe, J. R., Bergin, C. J., Sandouka, T., & Benoit, Y. D. (2021). Emerging role of G9a in cancer stemness and promises as a therapeutic target. Oncogenesis, 10(11), 76. https://doi.org/10.1038/s41389-021-00370-7.
Article CAS PubMed PubMed Central Google Scholar
Kato, S., Weng, Q. Y., Insco, M. L., Chen, K. Y., Muralidhar, S., Pozniak, J., Diaz, J. M. S., Drier, Y., Nguyen, N., Lo, J. A., van Rooijen, E., Kemeny, L. V., Zhan, Y., Feng, Y., Silkworth, W., Powell, C. T., Liau, B. B., Xiong, Y., Jin, J., Newton-Bishop, J., Zon, L. I., Bernstein, B. E., & Fisher, D. E. (2020). Gain-of-function genetic alterations of G9a drive oncogenesis. Cancer Discovery. https://doi.org/10.1158/2159-8290.CD-19-0532.
Article PubMed PubMed Central Google Scholar
MacPherson, L., Anokye, J., Yeung, M. M., Lam, E. Y. N., Chan, Y. C., Weng, C. F., Yeh, P., Knezevic, K., Butler, M. S., Hoegl, A., Chan, K. L., Burr, M. L., Gearing, L. J., Willson, T., Liu, J., Choi, J., Yang, Y., Bilardi, R. A., Falk, H., Nguyen, N., Stupple, P. A., Peat, T. S., Zhang, M., de Silva, M., Carrasco-Pozo, C., Avery, V. M., Khoo, P. S., Dolezal, O., Dennis, M. L., Nuttall, S., Surjadi, R., Newman, J., Ren, B., Leaver, D. J., Sun, Y., Baell, J. B., Dovey, O., Vassiliou, G. S., Grebien, F., Dawson, S. J., Street, I. P., Monahan, B. J., Burns, C. J., Choudhary, C., Blewitt, M. E., Voss, A. K., Thomas, T., & Dawson, M. A. (2020). HBO1 is required for the maintenance of leukaemia stem cells. Nature, 577(7789), 266–270. https://doi.org/10.1038/s41586-019-1835-6.
Article CAS PubMed Google Scholar
Kahn, M. (2014). Can we safely target the WNT pathway? Nature Reviews. Drug Discovery, 13(7), 513–532. https://doi.org/10.1038/nrd4233.
Article CAS PubMed PubMed Central Google Scholar
Benoit, Y. D., Mitchell, R. R., Risueno, R. M., Orlando, L., Tanasijevic, B., Boyd, A. L., Aslostovar, L., Salci, K. R., Shapovalova, Z., Russell, J., Eguchi, M., Golubeva, D., Graham, M., Xenocostas, A., Trus, M. R., Foley, R., Leber, B., Collins, T. J., & Bhatia, M. (2017). Sam68 allows selective targeting of Human Cancer Stem cells. Cell Chem Biol, 24(7), 833–844e839. https://doi.org/10.1016/j.chembiol.2017.05.026.
Article CAS PubMed Google Scholar
Emami, K. H., Nguyen, C., Ma, H., Kim, D. H., Jeong, K. W., Eguchi, M., Moon, R. T., Teo, J. L., Kim, H. Y., Moon, S. H., Ha, J. R., & Kahn, M. (2004). A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci U S A, 101(34), 12682–12687. https://doi.org/10.1073/pnas.0404875101.
Article CAS PubMed PubMed Central Google Scholar
Jang, G. B., Hong, I. S., Kim, R. J., Lee, S. Y., Park, S. J., Lee, E. S., Park, J. H., Yun, C. H., Chung, J. U., Lee, K. J., Lee, H. Y., & Nam, J. S. (2015). Wnt/β-Catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast Cancer stem-like cells. Cancer Research, 75(8), 1691–1702. https://doi.org/10.1158/0008-5472.CAN-14-2041.
Article CAS PubMed Google Scholar
Kim, J. Y., Lee, H. Y., Park, K. K., Choi, Y. K., Nam, J. S., & Hong, I. S. (2016). CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: A novel therapeutic approach for liver cancer treatment. Oncotarget, 7(15), 20395–20409. https://doi.org/10.18632/oncotarget.7954.
Article PubMed PubMed Central Google Scholar
Masibag, A. N., Bergin, C. J., Haebe, J. R., Zouggar, A., Shah, M. S., Sandouka, T., Mendes da Silva, A., Desrochers, F. M., Fournier-Morin, A., & Benoit, Y. D. (2021). Pharmacological targeting of Sam68 functions in colorectal cancer stem cells. iScience, 24(12), 103442. https://doi.org/10.1016/j.isci.2021.103442.
Article CAS PubMed PubMed Central Google Scholar
Li, Z., Yu, C. P., Zhong, Y., Liu, T. J., Huang, Q. D., Zhao, X. H., Huang, H., Tu, H., Jiang, S., Zhang, Y., Liu, J. H., & Song, L. B. (2012). Sam68 expression and cytoplasmic localization is correlated with lymph node metastasis as well as prognosis in patients with early-stage cervical cancer. Annals of Oncology, 23(3), 638–646. https://doi.org/10.1093/annonc/mdr290.
Article CAS PubMed Google Scholar
Zhang, Z., Li, J., Zheng, H., Yu, C., Chen, J., Liu, Z., Li, M., Zeng, M., Zhou, F., & Song, L. (2009). Expression and cytoplasmic localization of SAM68 is a significant and independent prognostic marker for renal cell carcinoma. Cancer Epidemiology, Biomarkers & Prevention, 18(10), 2685–2693. https://doi.org/10.1158/1055-9965.EPI-09-0097.
Malki, I., Liepina, I., Kogelnik, N., Watmuff, H., Robinson, S., Lightfoot, A., Gonchar, O., Bottrill, A., Fry, A. M., & Dominguez, C. (2022). Cdk1-mediated threonine phosphorylation of Sam68 modulates its RNA binding, alternative splicing activity and cellular functions. Nucleic Acids Research, 50(22), 13045–13062. https://doi.org/10.1093/nar/gkac1181.
Article CAS PubMed PubMed Central Google Scholar
Fumagalli, S., Totty, N. F., Hsuan, J. J., & Courtneidge, S. A. (1994). A target for src in mitosis. Nature, 368(6474), 871–874. https://doi.org/10.1038/368871a0.
Article CAS PubMed Google Scholar
Lukong, K. E., & Richard, S. (2003). Sam68, the KH domain-containing superSTAR. Biochimica Et Biophysica Acta, 1653(2), 73–86. https://doi.org/10.1016/j.bbcan.2003.09.001.
Article CAS PubMed Google Scholar
Bielli, P., Busa, R., Paronetto, M. P., & Sette, C. (2011). The RNA-binding protein Sam68 is a multifunctional player in human cancer. Endocr Relat Cancer, 18(4), R91–R102. https://doi.o
Comments (0)