Sam68 is a druggable vulnerability point in cancer stem cells

Dick, J. E. (2008). Stem cell concepts renew cancer research. Blood, 112(13), 4793–4807. https://doi.org/10.1182/blood-2008-08-077941.

Article  CAS  PubMed  Google Scholar 

Visvader, J. E., & Lindeman, G. J. (2012). Cancer stem cells: Current status and evolving complexities. Cell Stem Cell, 10(6), 717–728. https://doi.org/10.1016/j.stem.2012.05.007.

Article  CAS  PubMed  Google Scholar 

Kreso, A., & Dick, J. E. (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14(3), 275–291. https://doi.org/10.1016/j.stem.2014.02.006.

Article  CAS  PubMed  Google Scholar 

Bayik, D., & Lathia, J. D. (2021). Cancer stem cell-immune cell crosstalk in tumour progression. Nature Reviews Cancer, 21(8), 526–536. https://doi.org/10.1038/s41568-021-00366-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wainwright, E. N., & Scaffidi, P. (2017). Epigenetics and Cancer Stem cells: Unleashing, hijacking, and restricting Cellular plasticity. Trends Cancer, 3(5), 372–386. https://doi.org/10.1016/j.trecan.2017.04.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hope, K. J., Jin, L., & Dick, J. E. (2004). Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunology, 5(7), 738–743. https://doi.org/10.1038/ni1080.

Article  CAS  PubMed  Google Scholar 

Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737. https://doi.org/10.1038/nm0797-730.

Article  CAS  PubMed  Google Scholar 

Kreso, A., van Galen, P., Pedley, N. M., Lima-Fernandes, E., Frelin, C., Davis, T., Cao, L., Baiazitov, R., Du, W., Sydorenko, N., Moon, Y. C., Gibson, L., Wang, Y., Leung, C., Iscove, N. N., Arrowsmith, C. H., Szentgyorgyi, E., Gallinger, S., Dick, J. E., & O’Brien, C. A. (2014). Self-renewal as a therapeutic target in human colorectal cancer. Nature Medicine, 20(1), 29–36. https://doi.org/10.1038/nm.3418.

Article  CAS  PubMed  Google Scholar 

de Sousa e Melo, F., Kurtova, A. V., Harnoss, J. M., Kljavin, N., Hoeck, J. D., Hung, J., Anderson, J. E., Storm, E. E., Modrusan, Z., Koeppen, H., Dijkgraaf, G. J., Piskol, R., & de Sauvage, F. J. (2017). A distinct role for Lgr5(+) stem cells in primary and metastatic colon cancer. Nature, 543(7647), 676–680. https://doi.org/10.1038/nature21713.

Article  CAS  PubMed  Google Scholar 

Boyd, A. L., Aslostovar, L., Reid, J., Ye, W., Tanasijevic, B., Porras, D. P., Shapovalova, Z., Almakadi, M., Foley, R., Leber, B., Xenocostas, A., & Bhatia, M. (2018). Identification of Chemotherapy-Induced Leukemic-Regenerating cells reveals a transient vulnerability of human AML recurrence. Cancer Cell, 34(3), 483–498e485. https://doi.org/10.1016/j.ccell.2018.08.007.

Article  CAS  PubMed  Google Scholar 

Shimokawa, M., Ohta, Y., Nishikori, S., Matano, M., Takano, A., Fujii, M., Date, S., Sugimoto, S., Kanai, T., & Sato, T. (2017). Visualization and targeting of LGR5. Nature, 545(7653), 187–192. https://doi.org/10.1038/nature22081.

Article  CAS  PubMed  Google Scholar 

Basu, S., Dong, Y., Kumar, R., Jeter, C., & Tang, D. G. (2022). Slow-cycling (dormant) cancer cells in therapy resistance, cancer relapse and metastasis. Semin Cancer Biol, 78, 90–103. https://doi.org/10.1016/j.semcancer.2021.04.021.

Article  CAS  PubMed  Google Scholar 

Blasco, M. T., Espuny, I., & Gomis, R. R. (2022). Ecology and evolution of dormant metastasis. Trends Cancer, 8(7), 570–582. https://doi.org/10.1016/j.trecan.2022.03.002.

Article  CAS  PubMed  Google Scholar 

Toh, T. B., Lim, J. J., & Chow, E. K. (2017). Epigenetics in cancer stem cells. Molecular Cancer, 16(1), 29. https://doi.org/10.1186/s12943-017-0596-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bergin, C. J., Zouggar, A., Haebe, J. R., Masibag, A. N., Desrochers, F. M., Reilley, S. Y., Agrawal, G., & Benoit, Y. D. (2021). G9a controls pluripotent-like identity and tumor-initiating function in human colorectal cancer. Oncogene, 40(6), 1191–1202. https://doi.org/10.1038/s41388-020-01591-7.

Article  CAS  PubMed  Google Scholar 

Haebe, J. R., Bergin, C. J., Sandouka, T., & Benoit, Y. D. (2021). Emerging role of G9a in cancer stemness and promises as a therapeutic target. Oncogenesis, 10(11), 76. https://doi.org/10.1038/s41389-021-00370-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kato, S., Weng, Q. Y., Insco, M. L., Chen, K. Y., Muralidhar, S., Pozniak, J., Diaz, J. M. S., Drier, Y., Nguyen, N., Lo, J. A., van Rooijen, E., Kemeny, L. V., Zhan, Y., Feng, Y., Silkworth, W., Powell, C. T., Liau, B. B., Xiong, Y., Jin, J., Newton-Bishop, J., Zon, L. I., Bernstein, B. E., & Fisher, D. E. (2020). Gain-of-function genetic alterations of G9a drive oncogenesis. Cancer Discovery. https://doi.org/10.1158/2159-8290.CD-19-0532.

Article  PubMed  PubMed Central  Google Scholar 

MacPherson, L., Anokye, J., Yeung, M. M., Lam, E. Y. N., Chan, Y. C., Weng, C. F., Yeh, P., Knezevic, K., Butler, M. S., Hoegl, A., Chan, K. L., Burr, M. L., Gearing, L. J., Willson, T., Liu, J., Choi, J., Yang, Y., Bilardi, R. A., Falk, H., Nguyen, N., Stupple, P. A., Peat, T. S., Zhang, M., de Silva, M., Carrasco-Pozo, C., Avery, V. M., Khoo, P. S., Dolezal, O., Dennis, M. L., Nuttall, S., Surjadi, R., Newman, J., Ren, B., Leaver, D. J., Sun, Y., Baell, J. B., Dovey, O., Vassiliou, G. S., Grebien, F., Dawson, S. J., Street, I. P., Monahan, B. J., Burns, C. J., Choudhary, C., Blewitt, M. E., Voss, A. K., Thomas, T., & Dawson, M. A. (2020). HBO1 is required for the maintenance of leukaemia stem cells. Nature, 577(7789), 266–270. https://doi.org/10.1038/s41586-019-1835-6.

Article  CAS  PubMed  Google Scholar 

Kahn, M. (2014). Can we safely target the WNT pathway? Nature Reviews. Drug Discovery, 13(7), 513–532. https://doi.org/10.1038/nrd4233.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benoit, Y. D., Mitchell, R. R., Risueno, R. M., Orlando, L., Tanasijevic, B., Boyd, A. L., Aslostovar, L., Salci, K. R., Shapovalova, Z., Russell, J., Eguchi, M., Golubeva, D., Graham, M., Xenocostas, A., Trus, M. R., Foley, R., Leber, B., Collins, T. J., & Bhatia, M. (2017). Sam68 allows selective targeting of Human Cancer Stem cells. Cell Chem Biol, 24(7), 833–844e839. https://doi.org/10.1016/j.chembiol.2017.05.026.

Article  CAS  PubMed  Google Scholar 

Emami, K. H., Nguyen, C., Ma, H., Kim, D. H., Jeong, K. W., Eguchi, M., Moon, R. T., Teo, J. L., Kim, H. Y., Moon, S. H., Ha, J. R., & Kahn, M. (2004). A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci U S A, 101(34), 12682–12687. https://doi.org/10.1073/pnas.0404875101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jang, G. B., Hong, I. S., Kim, R. J., Lee, S. Y., Park, S. J., Lee, E. S., Park, J. H., Yun, C. H., Chung, J. U., Lee, K. J., Lee, H. Y., & Nam, J. S. (2015). Wnt/β-Catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast Cancer stem-like cells. Cancer Research, 75(8), 1691–1702. https://doi.org/10.1158/0008-5472.CAN-14-2041.

Article  CAS  PubMed  Google Scholar 

Kim, J. Y., Lee, H. Y., Park, K. K., Choi, Y. K., Nam, J. S., & Hong, I. S. (2016). CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: A novel therapeutic approach for liver cancer treatment. Oncotarget, 7(15), 20395–20409. https://doi.org/10.18632/oncotarget.7954.

Article  PubMed  PubMed Central  Google Scholar 

Masibag, A. N., Bergin, C. J., Haebe, J. R., Zouggar, A., Shah, M. S., Sandouka, T., Mendes da Silva, A., Desrochers, F. M., Fournier-Morin, A., & Benoit, Y. D. (2021). Pharmacological targeting of Sam68 functions in colorectal cancer stem cells. iScience, 24(12), 103442. https://doi.org/10.1016/j.isci.2021.103442.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Z., Yu, C. P., Zhong, Y., Liu, T. J., Huang, Q. D., Zhao, X. H., Huang, H., Tu, H., Jiang, S., Zhang, Y., Liu, J. H., & Song, L. B. (2012). Sam68 expression and cytoplasmic localization is correlated with lymph node metastasis as well as prognosis in patients with early-stage cervical cancer. Annals of Oncology, 23(3), 638–646. https://doi.org/10.1093/annonc/mdr290.

Article  CAS  PubMed  Google Scholar 

Zhang, Z., Li, J., Zheng, H., Yu, C., Chen, J., Liu, Z., Li, M., Zeng, M., Zhou, F., & Song, L. (2009). Expression and cytoplasmic localization of SAM68 is a significant and independent prognostic marker for renal cell carcinoma. Cancer Epidemiology, Biomarkers & Prevention, 18(10), 2685–2693. https://doi.org/10.1158/1055-9965.EPI-09-0097.

Article  CAS  Google Scholar 

Malki, I., Liepina, I., Kogelnik, N., Watmuff, H., Robinson, S., Lightfoot, A., Gonchar, O., Bottrill, A., Fry, A. M., & Dominguez, C. (2022). Cdk1-mediated threonine phosphorylation of Sam68 modulates its RNA binding, alternative splicing activity and cellular functions. Nucleic Acids Research, 50(22), 13045–13062. https://doi.org/10.1093/nar/gkac1181.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fumagalli, S., Totty, N. F., Hsuan, J. J., & Courtneidge, S. A. (1994). A target for src in mitosis. Nature, 368(6474), 871–874. https://doi.org/10.1038/368871a0.

Article  CAS  PubMed  Google Scholar 

Lukong, K. E., & Richard, S. (2003). Sam68, the KH domain-containing superSTAR. Biochimica Et Biophysica Acta, 1653(2), 73–86. https://doi.org/10.1016/j.bbcan.2003.09.001.

Article  CAS  PubMed  Google Scholar 

Bielli, P., Busa, R., Paronetto, M. P., & Sette, C. (2011). The RNA-binding protein Sam68 is a multifunctional player in human cancer. Endocr Relat Cancer, 18(4), R91–R102. https://doi.o

Comments (0)

No login
gif