O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–28.
Article PubMed PubMed Central Google Scholar
O’Shea JJ, Kontzias A, Yamaoka K, Tanaka Y, Laurence A. Janus kinase Inhibitors in autoimmune diseases. Ann Rheum Dis. 2013;72(02):ii111–5.
chmp-post-authorisation-summary-opinion-olumiant-x-35-g_en.pdf [Internet]. [cited 2023 Jul 25]. https://www.ema.europa.eu/en/documents/smop/chmp-post-authorisation-summary-opinion-olumiant-x-35-g_en.pdf. Accessed 2 Sept 2022.
Johnston JA, Kawamura M, Kirken RA, Chen YQ, Blake TB, Shibuya K, et al. Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature. 1994;370(6485):151–3.
Article CAS PubMed Google Scholar
Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12(1):25.
Article CAS PubMed Google Scholar
JAKs and STATs in Immunity, Immunodeficiency, and Cancer|NEJM [Internet]. [cited 2023 Mar 27]. https://doi.org/10.1056/NEJMra1202117
Liongue C, Ward AC. Evolution of the JAK-STAT pathway. JAKSTAT. 2013;2(1): e22756.
PubMed PubMed Central Google Scholar
Gadina M, Le MT, Schwartz DM, Silvennoinen O, Nakayamada S, Yamaoka K, et al. Janus kinases to jakinibs: from basic insights to clinical practice. Rheumatology (Oxford). 2019;58(Suppl 1):i4-16.
Article CAS PubMed Google Scholar
Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25(5):745–55.
Article CAS PubMed Google Scholar
Stark GR, Darnell JE. The JAK-STAT pathway at twenty. Immunity. 2012;36(4):503–14.
Article CAS PubMed PubMed Central Google Scholar
Leonard WJ, Noguchi M, Russell SM, McBride OW. The molecular basis of X-linked severe combined immunodeficiency: the role of the interleukin-2 receptor γ chain as a common γ chain, γc. Immunol Rev. 1994;138(1):61–86.
Article CAS PubMed Google Scholar
Tanaka Y, Maeshima Y, Yamaoka K. In vitro and in vivo analysis of a JAK inhibitor in rheumatoid arthritis. Ann Rheum Dis. 2012;71(Suppl 2):i70–4.
Article CAS PubMed Google Scholar
Choy EH. Clinical significance of Janus Kinase inhibitor selectivity. Rheumatology (Oxford). 2019;58(6):953–62.
Article CAS PubMed Google Scholar
Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998;93(3):373–83.
Article CAS PubMed Google Scholar
Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93(3):385–95.
Article CAS PubMed Google Scholar
Thomis DC, Gurniak CB, Tivol E, Sharpe AH, Berg LJ. Defects in B lymphocyte maturation and t lymphocyte activation in mice lacking Jak3. Science. 1995;270(5237):794–7.
Article CAS PubMed Google Scholar
Karaghiosoff M, Neubauer H, Lassnig C, Kovarik P, Schindler H, Pircher H, et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity. 2000;13(4):549–60.
Article CAS PubMed Google Scholar
Mutation of Jak3 in a Patient with SCID: Essential Role of Jak3 in Lymphoid Development | Science [Internet]. 2023. Doi: https://doi.org/10.1126/science.270.5237.797.
Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID)|Nature [Internet]. [cited 2023 Mar 27]. https://www.nature.com/articles/377065a0. Accessed 2 Sept 2022.
McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–19.
Article CAS PubMed Google Scholar
Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 2007;357(10):977–86.
Article CAS PubMed PubMed Central Google Scholar
Schinocca C, Rizzo C, Fasano S, Grasso G, Barbera LL, Ciccia F, et al. Role of the IL-23/IL-17 Pathway in rheumatic diseases: an overview. Front Immunol [Internet]. 2021 [cited 2023 Mar 27];12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937623/. Accessed 2 Sept 2022.
Tanaka Y, Luo Y, O’Shea JJ, Nakayamada S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat Rev Rheumatol. 2022;18(3):133–45.
Article CAS PubMed PubMed Central Google Scholar
Clarke SLN, Ramanan AV. Tofacitinib in juvenile idiopathic arthritis. The Lancet. 2021;398(10315):1943–5.
Deyà-Martínez A, Rivière JG, Roxo-Junior P, Ramakers J, Bloomfield M, Guisado Hernandez P, et al. Impact of JAK inhibitors in pediatric patients with STAT1 Gain of Function (GOF) mutations—10 children and review of the literature. J Clin Immunol. 2022;42(5):1071–82.
Article PubMed PubMed Central Google Scholar
Barton VR, Toussi A, Awasthi S, Kiuru M. Treatment of pediatric alopecia areata: a systematic review. J Am Acad Dermatol. 2022;86(6):1318–34.
Article CAS PubMed Google Scholar
Gómez-Arias PJ, Gómez-García F, Hernández-Parada J, Montilla-López AM, Ruano J, Parra-Peralbo E. Efficacy and safety of janus kinase inhibitors in type I interferon-mediated monogenic autoinflammatory disorders: a scoping review. Dermatol Ther (Heidelb). 2021;11(3):733–50.
Article PubMed PubMed Central Google Scholar
Liu E, Aslam N, Nigam G, Limdi JK. Tofacitinib and newer JAK inhibitors in inflammatory bowel disease—where we are and where we are going. Drugs Context. 2022;11:2021-11–2024.
Ruperto N, Brunner HI, Synoverska O, Ting TV, Mendoza CA, Spindler A, et al. Tofacitinib in juvenile idiopathic arthritis: a double-blind, placebo-controlled, withdrawal phase 3 randomised trial. The Lancet. 2021;398(10315):1984–96.
Ramanan AV, Quartier P, Okamoto N, Foeldvari I, Spindler A, Fingerhutová Š, et al. Baricitinib in juvenile idiopathic arthritis: an international, phase 3, randomised, double-blind, placebo-controlled, withdrawal, efficacy, and safety trial. Lancet. 2023;402(10401):555–70.
Gillard L, Pouchot J, Cohen-Aubart F, Koné-Paut I, Mouterde G, Michaud M, et al. JAK inhibitors in difficult-to-treat adult-onset Still’s disease and systemic-onset juvenile idiopathic arthritis. Rheumatology (Oxford). 2023;62(4):1594–604.
He T, Xia Y, Luo Y, Yang J. JAK inhibitors in systemic juvenile idiopathic arthritis. Front Pediatr. 2023;20(11):1134312.
Eli Lilly and Company. Randomized, double-blind, placebo-controlled, withdrawal, safety and efficacy study of oral baricitinib in patients from 1 year to less than 18 years old with systemic juvenile idiopathic arthritis [Internet]. clinicaltrials.gov; 2023 Mar [cited 2023 Apr 13]. Report No.: NCT04088396. Available from: https://clinicaltrials.gov/ct2/show/NCT04088396
Pfizer. Efficacy, safety, tolerability and pharmacokinetics of tofacitinib for treatment of systemic juvenile idiopathic arthritis (SJIA) with active systemic features in children and adolescent subjects [Internet]. clinicaltrials.gov; 2023 Mar [cited 2023 Apr 13]. Report No.: NCT03000439. Available from: https://clinicaltrials.gov/ct2/show/NCT03000439
Su Y, Tao T, Liu X, Su W. JAK-STAT signaling pathway in non-infectious uveitis. Biochem Pharmacol. 2022;1(204): 115236.
Miserocchi E, Giuffrè C, Cornalba M, Pontikaki I, Cimaz R. JAK inhibitors in refractory juvenile idiopathic arthritis-associated uveitis. Clin Rheumatol. 2020;39(3):847–51.
Ramanan AV, Guly CM, Keller SY, Schlichting DE, de Bono S, Liao R, et al. Clinical effectiveness and safety of baricitinib for the treatment of juvenile idiopathic arthritis-associated uveitis or chronic anterior antinuclear antibody-positive uveitis: study protocol for an open-label, adalimumab active-controlled phase 3 clinical trial (JUVE-BRIGHT). Trials. 2021;9(22):689.
Ll Wilkinson MG, Deakin CT, Papadopoulou C, Eleftheriou D, Wedderburn LR. JAK inhibitors: a potential treatment for JDM in the context of the role of interferon-driven pathology. Pediatr Rheumatol. 2021;19(1):146.
Wallace DJ, Furie RA, Tanaka Y, Kalunian KC, Mosca M, Petri MA, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10143):222–31.
Article CAS PubMed Google Scholar
Petri M, Bruce IN, Dörner T, Tanaka Y, Morand EF, Kalunian KC, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 3 trial (SLE-BRAVE-II). The Lancet. 2023;401(10381):1011–9.
König N, Fiehn C, Wolf C, Schuster M, Costa EC, Tüngler V, et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis. 2017;76(2):468–72.
Constant BD, Baldassano R, Kirsch J, Mitchel EB, Stein R, Albenberg L. Tofacitinib salvage therapy for children hospitalized for corticosteroid- and biologic-refractory ulcerative colitis. J Pediatr Gastroenterol Nutr. 2022;75(6):724–30.
Article CAS PubMed Google Scholar
EMA. European Medicines Agency. 2022 [cited 2023 Mar 26]. EMA recommends measures to minimise risk of serious side effects with Janus kinase inhibitors for chronic inflammatory disorders. https://www.ema.europa.eu/en/news/ema-recommends-measures-minimise-risk-serious-side-effects-janus-kinase-inhibitors-chronic. Accessed 2 Sept 2022.
Ytterberg SR, Bhatt DL, Mikuls TR, Koch GG, Fleischmann R, Rivas JL, et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N Engl J Med. 2022;386(4):316–26.
Comments (0)