Scope of JAK Inhibitors in Children: Recent Evidence and Way Forward

O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–28.

Article  PubMed  PubMed Central  Google Scholar 

O’Shea JJ, Kontzias A, Yamaoka K, Tanaka Y, Laurence A. Janus kinase Inhibitors in autoimmune diseases. Ann Rheum Dis. 2013;72(02):ii111–5.

Article  PubMed  Google Scholar 

chmp-post-authorisation-summary-opinion-olumiant-x-35-g_en.pdf [Internet]. [cited 2023 Jul 25]. https://www.ema.europa.eu/en/documents/smop/chmp-post-authorisation-summary-opinion-olumiant-x-35-g_en.pdf. Accessed 2 Sept 2022.

Johnston JA, Kawamura M, Kirken RA, Chen YQ, Blake TB, Shibuya K, et al. Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature. 1994;370(6485):151–3.

Article  CAS  PubMed  Google Scholar 

Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12(1):25.

Article  CAS  PubMed  Google Scholar 

JAKs and STATs in Immunity, Immunodeficiency, and Cancer|NEJM [Internet]. [cited 2023 Mar 27]. https://doi.org/10.1056/NEJMra1202117

Liongue C, Ward AC. Evolution of the JAK-STAT pathway. JAKSTAT. 2013;2(1): e22756.

PubMed  PubMed Central  Google Scholar 

Gadina M, Le MT, Schwartz DM, Silvennoinen O, Nakayamada S, Yamaoka K, et al. Janus kinases to jakinibs: from basic insights to clinical practice. Rheumatology (Oxford). 2019;58(Suppl 1):i4-16.

Article  CAS  PubMed  Google Scholar 

Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25(5):745–55.

Article  CAS  PubMed  Google Scholar 

Stark GR, Darnell JE. The JAK-STAT pathway at twenty. Immunity. 2012;36(4):503–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leonard WJ, Noguchi M, Russell SM, McBride OW. The molecular basis of X-linked severe combined immunodeficiency: the role of the interleukin-2 receptor γ chain as a common γ chain, γc. Immunol Rev. 1994;138(1):61–86.

Article  CAS  PubMed  Google Scholar 

Tanaka Y, Maeshima Y, Yamaoka K. In vitro and in vivo analysis of a JAK inhibitor in rheumatoid arthritis. Ann Rheum Dis. 2012;71(Suppl 2):i70–4.

Article  CAS  PubMed  Google Scholar 

Choy EH. Clinical significance of Janus Kinase inhibitor selectivity. Rheumatology (Oxford). 2019;58(6):953–62.

Article  CAS  PubMed  Google Scholar 

Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998;93(3):373–83.

Article  CAS  PubMed  Google Scholar 

Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93(3):385–95.

Article  CAS  PubMed  Google Scholar 

Thomis DC, Gurniak CB, Tivol E, Sharpe AH, Berg LJ. Defects in B lymphocyte maturation and t lymphocyte activation in mice lacking Jak3. Science. 1995;270(5237):794–7.

Article  CAS  PubMed  Google Scholar 

Karaghiosoff M, Neubauer H, Lassnig C, Kovarik P, Schindler H, Pircher H, et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity. 2000;13(4):549–60.

Article  CAS  PubMed  Google Scholar 

Mutation of Jak3 in a Patient with SCID: Essential Role of Jak3 in Lymphoid Development | Science [Internet]. 2023. Doi: https://doi.org/10.1126/science.270.5237.797.

Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID)|Nature [Internet]. [cited 2023 Mar 27]. https://www.nature.com/articles/377065a0. Accessed 2 Sept 2022.

McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–19.

Article  CAS  PubMed  Google Scholar 

Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 2007;357(10):977–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schinocca C, Rizzo C, Fasano S, Grasso G, Barbera LL, Ciccia F, et al. Role of the IL-23/IL-17 Pathway in rheumatic diseases: an overview. Front Immunol [Internet]. 2021 [cited 2023 Mar 27];12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937623/. Accessed 2 Sept 2022.

Tanaka Y, Luo Y, O’Shea JJ, Nakayamada S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat Rev Rheumatol. 2022;18(3):133–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clarke SLN, Ramanan AV. Tofacitinib in juvenile idiopathic arthritis. The Lancet. 2021;398(10315):1943–5.

Article  CAS  Google Scholar 

Deyà-Martínez A, Rivière JG, Roxo-Junior P, Ramakers J, Bloomfield M, Guisado Hernandez P, et al. Impact of JAK inhibitors in pediatric patients with STAT1 Gain of Function (GOF) mutations—10 children and review of the literature. J Clin Immunol. 2022;42(5):1071–82.

Article  PubMed  PubMed Central  Google Scholar 

Barton VR, Toussi A, Awasthi S, Kiuru M. Treatment of pediatric alopecia areata: a systematic review. J Am Acad Dermatol. 2022;86(6):1318–34.

Article  CAS  PubMed  Google Scholar 

Gómez-Arias PJ, Gómez-García F, Hernández-Parada J, Montilla-López AM, Ruano J, Parra-Peralbo E. Efficacy and safety of janus kinase inhibitors in type I interferon-mediated monogenic autoinflammatory disorders: a scoping review. Dermatol Ther (Heidelb). 2021;11(3):733–50.

Article  PubMed  PubMed Central  Google Scholar 

Liu E, Aslam N, Nigam G, Limdi JK. Tofacitinib and newer JAK inhibitors in inflammatory bowel disease—where we are and where we are going. Drugs Context. 2022;11:2021-11–2024.

Article  Google Scholar 

Ruperto N, Brunner HI, Synoverska O, Ting TV, Mendoza CA, Spindler A, et al. Tofacitinib in juvenile idiopathic arthritis: a double-blind, placebo-controlled, withdrawal phase 3 randomised trial. The Lancet. 2021;398(10315):1984–96.

Article  CAS  Google Scholar 

Ramanan AV, Quartier P, Okamoto N, Foeldvari I, Spindler A, Fingerhutová Š, et al. Baricitinib in juvenile idiopathic arthritis: an international, phase 3, randomised, double-blind, placebo-controlled, withdrawal, efficacy, and safety trial. Lancet. 2023;402(10401):555–70.

Gillard L, Pouchot J, Cohen-Aubart F, Koné-Paut I, Mouterde G, Michaud M, et al. JAK inhibitors in difficult-to-treat adult-onset Still’s disease and systemic-onset juvenile idiopathic arthritis. Rheumatology (Oxford). 2023;62(4):1594–604.

Article  PubMed  Google Scholar 

He T, Xia Y, Luo Y, Yang J. JAK inhibitors in systemic juvenile idiopathic arthritis. Front Pediatr. 2023;20(11):1134312.

Article  Google Scholar 

Eli Lilly and Company. Randomized, double-blind, placebo-controlled, withdrawal, safety and efficacy study of oral baricitinib in patients from 1 year to less than 18 years old with systemic juvenile idiopathic arthritis [Internet]. clinicaltrials.gov; 2023 Mar [cited 2023 Apr 13]. Report No.: NCT04088396. Available from: https://clinicaltrials.gov/ct2/show/NCT04088396

Pfizer. Efficacy, safety, tolerability and pharmacokinetics of tofacitinib for treatment of systemic juvenile idiopathic arthritis (SJIA) with active systemic features in children and adolescent subjects [Internet]. clinicaltrials.gov; 2023 Mar [cited 2023 Apr 13]. Report No.: NCT03000439. Available from: https://clinicaltrials.gov/ct2/show/NCT03000439

Su Y, Tao T, Liu X, Su W. JAK-STAT signaling pathway in non-infectious uveitis. Biochem Pharmacol. 2022;1(204): 115236.

Article  Google Scholar 

Miserocchi E, Giuffrè C, Cornalba M, Pontikaki I, Cimaz R. JAK inhibitors in refractory juvenile idiopathic arthritis-associated uveitis. Clin Rheumatol. 2020;39(3):847–51.

Article  PubMed  Google Scholar 

Ramanan AV, Guly CM, Keller SY, Schlichting DE, de Bono S, Liao R, et al. Clinical effectiveness and safety of baricitinib for the treatment of juvenile idiopathic arthritis-associated uveitis or chronic anterior antinuclear antibody-positive uveitis: study protocol for an open-label, adalimumab active-controlled phase 3 clinical trial (JUVE-BRIGHT). Trials. 2021;9(22):689.

Article  Google Scholar 

Ll Wilkinson MG, Deakin CT, Papadopoulou C, Eleftheriou D, Wedderburn LR. JAK inhibitors: a potential treatment for JDM in the context of the role of interferon-driven pathology. Pediatr Rheumatol. 2021;19(1):146.

Article  Google Scholar 

Wallace DJ, Furie RA, Tanaka Y, Kalunian KC, Mosca M, Petri MA, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10143):222–31.

Article  CAS  PubMed  Google Scholar 

Petri M, Bruce IN, Dörner T, Tanaka Y, Morand EF, Kalunian KC, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 3 trial (SLE-BRAVE-II). The Lancet. 2023;401(10381):1011–9.

Article  CAS  Google Scholar 

König N, Fiehn C, Wolf C, Schuster M, Costa EC, Tüngler V, et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis. 2017;76(2):468–72.

Article  PubMed  Google Scholar 

Constant BD, Baldassano R, Kirsch J, Mitchel EB, Stein R, Albenberg L. Tofacitinib salvage therapy for children hospitalized for corticosteroid- and biologic-refractory ulcerative colitis. J Pediatr Gastroenterol Nutr. 2022;75(6):724–30.

Article  CAS  PubMed  Google Scholar 

EMA. European Medicines Agency. 2022 [cited 2023 Mar 26]. EMA recommends measures to minimise risk of serious side effects with Janus kinase inhibitors for chronic inflammatory disorders. https://www.ema.europa.eu/en/news/ema-recommends-measures-minimise-risk-serious-side-effects-janus-kinase-inhibitors-chronic. Accessed 2 Sept 2022.

Ytterberg SR, Bhatt DL, Mikuls TR, Koch GG, Fleischmann R, Rivas JL, et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N Engl J Med. 2022;386(4):316–26.

Article 

Comments (0)

No login
gif