A. Loeschcke, D. Dienst, V. Wewer, et al., PLoS One 12, 1 (2017). https://doi.org/10.1371/journal.pone.0189816
E. P. Petushkov and A. A. Tsygankov, Vestn. Voronezh Gos. Univ., Ser. Khim., Biol., Farmats., No. 3, 136 (2018).
Hall J.P.J., Brockhurst M.A., and Harrison E., Philos. Trans. R. Soc. B 372. 1 (2017). https://doi.org/10.1098/rstb.2016.0424
D. Dubnau and M. Blokesch, Annu. Rev. Genet. 53, 217 (2019). https://doi.org/10.1146/annurev-genet-112618-043641
U. Fels, K. Gevaert, and P. Van Damme, Front. Microbiol. 11, 1 (2020). https://doi.org/10.3389/fmicb.2020.548410
M. Haudiquet, A. Buffet, O. Rendueles et al., “The interplay between the bacterial capsule and mobile genetic elements determines direction and intensity of gene flux in Klebsiella pneumoniae,” bioRxiv (2021).
H. T. Flammann and J. Weckesser, J. Bacteriol. 159, 191 (1984). https://doi.org/10.1128/jb.159.1.191-198.1984
K. S. Makarova, Y. I. Wolf, and E. V. Koonin, Nucleic Acids Res. 41, 4360 (2013).
P. D. Laible and D. K. Hanson, US Patent No. us9963709b2 (2012).
T. Xu, F. Yao, X. Zhou, et al., Nucleic Acids Res. 38, 7133 (2010). https://doi.org/10.1093/nar/gkq610
X. He, H. Y. Ou, Q. Yu, et al., Mol. Microbiol. 65, 1034 (2007). https://doi.org/10.1111/j.1365-2958.2007.05846.x
J. Liang, Z. Wang, X. He, et al., Nucleic Acids Res. 35, 2944 (2007). https://doi.org/10.1093/nar/gkm176
L. Wang, S. Chen, L. Vergin, et al., Proc. Natl. Acad. Sci. 108, 2963 (2011). https://doi.org/10.1073/pnas.1017261108
W. He, T. Huang, Y. Tang, et al., Sci. Rep. 5, 1 (2015). https://doi.org/10.1038/srep12368
H. Suzuki, Methylation–from DNA, RNA, and Histones to Diseases and Treatment (2012). https://doi.org/10.5772/51691
R. Barrangou and P. Horvath, Annu. Rev. Food Sci. Technol. 3, 143 (2012). https://doi.org/10.1146/annurev-food-022811-101134
B. Wiedenheft, S. H. Sternberg, and J. A. Doudna, Nature 482, 331 (2012). https://doi.org/10.1038/nature10886
F. V. Karginov and G. J. Hannon, Mol. Cell. 37, 7 (2010). https://doi.org/10.1016/j.molcel.2009.12.033
J. van der Oost, M. M. Jore, E. R. Westra, et al., Trends Biochem. Sci. 34, 401 (2009). https://doi.org/10.1016/j.tibs.2009.05.002
K. S. Makarova, D. H. Haft, R. Barrangou, et al., Nat. Rev. Microbiol. 9, 467 (2011). https://doi.org/10.1038/nrmicro2577
K. S. Makarova, Y. I. Wolf, and E. V. Koonin, Nucleic Acids Res. 41, 4360 (2013). https://doi.org/10.1093/nar/gkt157
F. González-Candelas and M. P. Francino, Barriers to Horizontal Gene Transfer: Fuzzy and Evolvable Boundaries (Academic Press, Caister, 2012).
M. P. Garcillán-Barcia and F. de la Cruz, Plasmid 60, 1 (2008). https://doi.org/10.1016/j.plasmid.2008.03.002
C. M. Thomas and K. M. Nielsen, Nat. Rev. Microbiol. 3, 711 (2005). https://doi.org/10.1038/nrmicro1234
E. V. Maiorova and E. P. Petushkova, in Proceedings of the Conference “From Primary Processes of Photosynthesis to Alternative Energy,” Pushchino, 2022.
P.-L. Yu, J. Cullum, and G. Drews, Arch. Microbiol. 128, 390 (1981). https://doi.org/10.1007/BF00405918
J. G. Ormerod, S. K. Ormerod, and H. Gest, Arch. Biochem. Biophys. 64, 449 (1961). https://doi.org/10.1016/0003-9861(61)90073-X
E. V. Patrusheva, A. S. Fedorov, V. V. Belera, et al., Appl. Biochem. Microbiol. 43, 208 (2007).
H.-G. Koch, H. Myllykallio, and F. Daldal, Photosynthesis: Mol. Biol. Energy Capture 297, 81 (1998). https://doi.org/10.1016/S0076-6879(98)97008-2
J. Sambrook, E. R. Fritsch, and T. Maniatis, Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989; Mir, Moscow, 1984).
W. J. Dower, J. F. Miller, and C. W. Ragsdale, Nucleic Acids Res. 16, 6127 (1988). https://doi.org/10.1093/nar/16.13.6127
L. N. Filatova, Candidate’s Dissertation in Biology (Moscow, 2004).
J. P. Donahue, D. A. Israel, R. M. Peek, et al., Mol. Microbiol. 37, 1066 (2000). https://doi.org/10.1046/j.1365-2958.2000.02036.x
J. Hoult, N. Krig, P. Snit, et al. Burgey Bacteria Key (Mir, Moscow, 1997).
B. Chassy, Trends Biotechnol. 6, 303 (1988). https://doi.org/10.1016/0167-7799(88)90025-X
L. I. Patrushev, Artificial Genetic Systems (Nauka, Moscow, 2004) [in Russian].
B. Marrs, Proc. Nat. Acad. Sci. 71, 971 (1974). https://doi.org/10.1073/pnas.71.3.971
D. Sherlock, J. X. Leong, and P. C. M. Fogg, J. Virol. 93, 1 (2019). https://doi.org/10.1128/JVI.01328-19
D. Chung, J. Farkas, and J. Westpheling, Biotechnol. Biofuels 6, 82 (2013). https://doi.org/10.1186/1754-6834-6-82
A. M. D.Guss, G. Olson, N. C. Caiazza et al., Biotechnol. Biofuels 5, 1 (2012). https://doi.org/10.1186/1754-6834-5-30
T. T. Hoang, R. R. Karkhoff-Schweizer, A. J. Kutchma, et al., Gene 212, 77 (1998). https://doi.org/10.1016/S0378-1119(98)00130-9
M. Kh. Khasimov, E. P. Petushkova, A. N. Khusnutdinova, et al., Biochim. Biophys. Acta–Bioenergetics 1862, 148492 (2021). https://doi.org/10.1016/j.bbabio.2021.148492
L. S. Palágyi-Mészáros, J. Maróti, D. Latinovics, et al., FEBS J. 276, 164 (2008). https://doi.org/10.1111/j.1742-4658.2008.06770.x
U. Fels, A. Gevaert, and P. Van Damme, Front. Microbiol. 11, 548410 (2020). https://doi.org/10.3389/fmicb.2020.548410
D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry, Vol. 3: Ways of Information Transfer (W. H. Freeman, 2012; BINOM: Laboratoriya Znanii, Moscow, 2015).
C. S. Fornari and S. Kaplan, J. Bacteriol. 150, 89 (1982). https://doi.org/10.1128/jb.152.1.89-97.1982
W. P. Fitzmaurice and G. P. Roberts, Arch. Microbiol. 156, 142 (1991). https://doi.org/10.1007/BF00290987
M. Higuchi-Takeuchi, K. Morisaki, and K. Numata, Microbiol. Open 9, 1 (2019). https://doi.org/10.1002/mbo3.953
Comments (0)