D. Rus and M. T. Tolley, Nature 521, 467 (2015). https://doi.org/10.1038/nature14543
Article CAS PubMed Google Scholar
D. M. Rusu, S. D. Mândru, C. M. Biriș, et al., Micromachines 14, 359 (2023). https://doi.org/10.3390/mi14020359
Article PubMed PubMed Central Google Scholar
T. T. Hoang, P. Phan, M. Thai, et al., Adv. Mater. Technol. 5, 2000724 (2020). https://doi.org/10.1002/admt.202000724
M. McCandless, A. Perry, N. Difilippo, et al., Soft Robot 9, 754 (2022). https://doi.org/10.1089/soro.2020.0127
E. Roche, T. Horvath, I. Wamala, et al., Sci. Transl. Med. 9, 3925 (2017). https://doi.org/10.1126/scitranslmed.aaf3925
J. Park, S. Choi, A. Janardhan, et al., Sci. Transl. Med. 8, 86 (2016). https://doi.org/10.1126/scitranslmed.aad8568
L. Hines, K. Petersen, G. Z. Lum, and M. Sitti, Adv. Mater. 29, 1603483 (2017). https://doi.org/10.1002/adma.201603483
M. Wei, Y. Gao, X. Li, and M. Serpe, Polym. Chem. 8, 127 (2017). https://doi.org/10.1039/c6py01585a
Q. Zhao, J. Dunlop, X. Qui, et al., Nat. Commun. 5, 4293 (2014). https://doi.org/10.1038/ncomms5293
Article CAS PubMed Google Scholar
Y. Wu, L. Shangguan, Q. Li, et al., Angew. Chem., Int. Ed. 60, 19997 (2021). https://doi.org/10.1002/anie.202107903
T. A. Luong, S. Seo, J. Koo, et al., in Proceedings of the 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2017, p. 607. https://doi.org/10.1109/URAI.2017.7992683
E. Selezneva, A. Bakirov, N. Sedush, et al., Macromolecules 54, 2506 (2021). https://doi.org/10.1021/acs.macromol.0c02102
Y. Ling, W. Pang, X. Li, et al., Adv. Mater. 32, 1908475 (2020). https://doi.org/10.1002/adma.201908475
I. Anderson, T. Gisby, T. McKay, B. O’Brien, and E. Calius, J. Appl. Phys. 112, 041101 (2012). https://doi.org/10.1063/1.4740023
N. M. Kuznetsov, V. V. Kovaleva, S. I. Belousov, and S. N. Chvalun, Mater. Today Chem. 26, 101066 (2022). https://doi.org/10.1016/j.mtchem.2022.101066
J. Zhang, O. Onaizah, K. Middleton, et al., IEEE Robot. Autom. Lett. 2, 835 (2017). https://doi.org/10.1109/LRA.2017.2657879
V. Rusakov and Y. Raikher, Colloid J. 84, 741 (2022). https://doi.org/10.31857/S002329122270001X
V. Mkrtchyan and Y. Dikanskii, Colloid J. 84, 752 (2022). https://doi.org/10.31857/S0023291222600286
H. P. Schultheiss, D. Fairweather, A. L. P. Caforio, et al., Nat. Rev. Disease Primers 5, 32 (2019). https://doi.org/10.1038/s41572-019-0084-1
M. Schmid Daners, F. Kaufmann, R. Amacher, et al., Ann. Biomed. Eng. 45, 1836 (2017). https://doi.org/10.1007/s10439-017-1858-9
K. V. Shatalov, M. V. Makhalin, M. A. Chupina, and E. Z. Goluhova, Russ. J. Transplantol. Artif. Organs 26, 67 (2024). https://doi.org/10.15825/1995-1191-2024-1-67-77
E. F. Long, G. W. Swain, and A. A. Mangi, Circ.:Heart Failure 7, 470 (2014). https://doi.org/10.1161/CIRCHEARTFAILURE.113.000807
Article CAS PubMed Google Scholar
W. Konertz, E. Shapland, H. Hotz, et al., Circulation 104, 270 (2001). https://doi.org/10.1161/hc37t1.094525
A. V. Sychev, V. V. Gerasimova, V. Yu. Mareev, et al., Serdechnaya Nedostatochnost’ 6, 209 (2004).
Yu. Belenkov, A. Koroteev, and V. Mareev, Kardiologiya 61, 4 (2021). https://doi.org/10.18087/cardio.2021.9.n1769
E. Acome, S. Mitchell, T. Morrissey, et al., Science 359, 61 (2018). https://doi.org/10.1126/science.aao6139
Article CAS PubMed Google Scholar
N. M. Kuznetsov, E. P. Banin, A. E. Krupnin, et al., Nanobiotechnol. Rep. 18, 189 (2023).
I. V. Bezsudnov, A. G. Khmelnitskaya, A. A. Kalinina, and S. A. Ponomarenko, Russ. Chem. Rev. 92, 5070 (2023). https://doi.org/10.57634/RCR5070
R. Kornbluh, R. Pelrine, J. Eckerle, and J. Joseph, IEEE Int. Conf. Robot. Autom. 3, 2147 (1998). https://doi.org/10.1109/ROBOT.1998.680638
I. A. Anderson, T. Hale, T. Gisby, et al., Appl. Phys. A 98, 75 (2010). https://doi.org/10.1007/s00339-009-5434-5
G. Kofod, W. Wirges, M. Paajanen, and S. Bauer, Appl. Phys. Lett. 90, 081916 (2007). https://doi.org/10.1063/1.2695785
O. V. Arzhakova, M. S. Arzhakov, E. R. Badamshina, et al., Russ. Chem. Rev. 91, RCR5062 (2022). https://doi.org/10.57634/RCR5062
I. J. Kim, K. Cho, E. Kim, et al., Nanomaterials 11, 6 (2021). https://doi.org/10.3390/nano11010006
N. M. Kuznetsov, E. P. Banin, A. E. Krupnin, et al., Her. Bauman Moscow State Tech. Univ. Ser. Nat. Sci. 6, 123 (2022). https://doi.org/10.18698/1812-3368-2022-6-123-143
E. A. Bratsykhin and E. S. Shul’gina, Technology of Plastics: Textbook for Technical Schools, 3rd ed. (Khimiya, Leningrad, 1982) [in Russian].
R. Vogels, A. Lambertz, P. Schuster, et al., J. Biomed. Mater. Res., Part B 105, 99 (2015). https://doi.org/10.1002/jbm.b.33531
L. A. Kazitsyna and N. B. Kupletskaya, Application of UV, IR, NMR, and Mass Spectroscopy in Organic Cchemistry (Izd. Mosk. Gos. Univ., Moscow, 1979) [in Russian].
R. Silverstein, G. Bassler, and T. Morril, Spectrometric Identification of Organic Compounds (Wiley, 1991; Mir, Moscow, 1977).
I. Ya. Slonim and Ya. G. Urman, NMR Sectroscopy of Heterochain Polymers (Khimiya, Moscow, 1982) [in Russian].
M. Polo, M. Sponton, F. Jaramillo, et al., J. Appl. Polym. Sci. 135, 45747 (2018). https://doi.org/10.1002/app.45747
P. Wright and A. P. C. Cumming, Solid Polyurethane Elastomers (Maclaren and Sons, London, 1969).
Yu. K. Godovskii, N. P. Bessonova, and N. P. Mironova, Vysokomol. Soed. Ser A 25, 296 (1983).
S. V. Nesterov, I. N. Bakirova, and Ya. D. Samuilov, Vestn. Kazan. Tekhnolog. Univ., No. 14, 10 (2011).
C. Brett, W. Ohm, B. Fricke, et al., ACS Appl. Mater. Interfaces 13, 27696 (2021). https://doi.org/10.1021/acsami.1c07544
Article CAS PubMed PubMed Central Google Scholar
D. Schaefer and R. Justice, Macromolecules 40, 8501 (2007). https://doi.org/10.1021/ma070356w
T. Zhang, B. Han, J. Yu, X. Wang, P. Huang, RSC Adv. 8, 16696 (2018). https://doi.org/10.1039/c8ra01989d
Comments (0)