Hamet P, Tremblay J (2017) Artificial intelligence in medicine. Metabolism 69S:S36–S40. https://doi.org/10.1016/j.metabol.2017.01.011
Article CAS PubMed Google Scholar
Kalmet PHS, Sanduleanu S, Primakov S, Wu G, Jochems A, Refaee T, Ibrahim A, Hulst LV, Lambin P, Poeze M (2020) Deep learning in fracture detection: a narrative review. Acta Orthop 91(2):215–220. https://doi.org/10.1080/17453674.2019.1711323
Article PubMed PubMed Central Google Scholar
Bini SA (2018) Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care? J Arthroplasty 33(8):2358–2361. https://doi.org/10.1016/j.arth.2018.02.067
Herrmann J, Keller G, Gassenmaier S, Nickel D, Koerzdoerfer G, Mostapha M, Almansour H, Afat S, Othman AE (2022) Feasibility of an accelerated 2D-multi-contrast knee MRI protocol using deep-learning image reconstruction: a prospective intraindividual comparison with a standard MRI protocol. Eur Radiol 32(9):6215–6229. https://doi.org/10.1007/s00330-022-08753-z
Article CAS PubMed PubMed Central Google Scholar
Johnson PM, Lin DJ, Zbontar J, Zitnick CL, Sriram A, Muckley M, Babb JS, Kline M, Ciavarra G, Alaia E, Samim M, Walter WR, Calderon L, Pock T, Sodickson DK, Recht MP, Knoll F (2023) Deep learning reconstruction enables prospectively accelerated clinical knee MRI. Radiology. https://doi.org/10.1148/radiol.220425
Article PubMed PubMed Central Google Scholar
Keller G, Estler A, Herrmann J, Afat S, Othman AE, Nickel D, Koerzdoerfer G, Springer F (2023) Prospective intraindividual comparison of a standard 2D TSE MRI protocol for ankle imaging and a deep learning-based 2D TSE MRI protocol with a scan time reduction of 48. Radiol Med. https://doi.org/10.1007/s11547-023-01604-x
Article PubMed PubMed Central Google Scholar
Simon S, Schwarz GM, Aichmair A, Frank BJH, Hummer A, DiFranco MD, Dominkus M, Hofstaetter JG (2021) Fully automated deep learning for knee alignment assessment in lower extremity radiographs: a cross-sectional diagnostic study. Skeletal Radiol. https://doi.org/10.1007/s00256-021-03948-9
Swiecicki A, Li N, O’Donnell J, Said N, Yang J, Mather RC, Jiranek WA, Mazurowski MA (2021) Deep learning-based algorithm for assessment of knee osteoarthritis severity in radiographs matches performance of radiologists. Comput Biol Med 133:104334. https://doi.org/10.1016/j.compbiomed.2021.104334
Duron L, Ducarouge A, Gillibert A, Laine J, Allouche C, Cherel N, Zhang Z, Nitche N, Lacave E, Pourchot A, Felter A, Lassalle L, Regnard NE, Feydy A (2021) Assessment of an AI aid in detection of adult appendicular skeletal fractures by emergency physicians and radiologists: a multicenter cross-sectional diagnostic study. Radiology 300(1):120–129. https://doi.org/10.1148/radiol.2021203886
Radke KL, Wollschlager LM, Nebelung S, Abrar DB, Schleich C, Boschheidgen M, Frenken M, Schock J, Klee D, Frahm J, Antoch G, Thelen S, Wittsack HJ, Muller-Lutz A (2021) Deep learning-based post-processing of real-time MRI to assess and quantify dynamic wrist movement in health and disease. Diagnostics (Basel). https://doi.org/10.3390/diagnostics11061077
Watson HK, Ballet FL (1984) The SLAC wrist: scapholunate advanced collapse pattern of degenerative arthritis. J Hand Surg Am 9(3):358–365. https://doi.org/10.1016/s0363-5023(84)80223-3
Article CAS PubMed Google Scholar
Rohman EM, Agel J, Putnam MD, Adams JE (2014) Scapholunate interosseous ligament injuries: a retrospective review of treatment and outcomes in 82 wrists. J Hand Surg Am 39(10):2020–2026. https://doi.org/10.1016/j.jhsa.2014.06.139
Schmid MR, Schertler T, Pfirrmann CW, Saupe N, Manestar M, Wildermuth S, Weishaupt D (2005) Interosseous ligament tears of the wrist: comparison of multi-detector row CT arthrography and MR imaging. Radiology 237(3):1008–1013. https://doi.org/10.1148/radiol.2373041450
De Santis S, Cozzolino R, Luchetti R, Cazzoletti L (2022) Comparison between MRI and arthroscopy of the wrist for the assessment of posttraumatic lesions of intrinsic ligaments and the triangular fibrocartilage complex. J Wrist Surg 11(1):28–34. https://doi.org/10.1055/s-0041-1729757
Dornberger JE, Rademacher G, Mutze S, Eisenschenk A, Stengel D (2015) Accuracy of simple plain radiographic signs and measures to diagnose acute scapholunate ligament injuries of the wrist. Eur Radiol 25(12):3488–3498. https://doi.org/10.1007/s00330-015-3776-2
He KGG, Dollár P, Girshick R (2017) Mask R-CNN. Proc IEEE Int Conf Comput Vis (ICCV) 2017:2961–2969. https://doi.org/10.1109/ICCV.2017.322
Lin TYMM, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft COCO: common objects in context. Computer vision-ECC. Springer, Cham
Rachunek K, Springer F, Barczak M, Kolbenschlag J, Daigeler A, Medved F (2022) An algorithmic diagnostic approach to scapholunate ligament injuries based on comparison of X-ray examinations and arthroscopy in 414 patients. J Plast Reconstr Aesthet Surg 75(9):3293–3303. https://doi.org/10.1016/j.bjps.2022.04.083
Article CAS PubMed Google Scholar
Geissler WB (2013) Arthroscopic management of scapholunate instability. J Wrist Surg 2(2):129–135. https://doi.org/10.1055/s-0033-1343354
Article PubMed PubMed Central Google Scholar
Bewick V, Cheek L, Ball J (2004) Statistics review 13: receiver operating characteristic curves. Crit Care 8(6):508–512. https://doi.org/10.1186/cc3000
Article PubMed PubMed Central Google Scholar
Sulkers GS, Schep NW, Maas M, van der Horst CM, Goslings JC, Strackee SD (2014) The diagnostic accuracy of wrist cineradiography in diagnosing scapholunate dissociation. J Hand Surg Eur 39(3):263–271. https://doi.org/10.1177/1753193413489056
Hafezi-Nejad N, Carrino JA, Eng J, Blackmore C, Shores J, Lifchez SD, Farahani SJ, Demehri S (2016) Scapholunate interosseous ligament tears: diagnostic performance of 1.5 T, 3 T MRI, and MR arthrography-a systematic review and meta-analysis. Acad Radiol 23(9):1091–1103. https://doi.org/10.1016/j.acra.2016.04.006
Meister DW, Hearns KA, Carlson MG (2017) Dorsal scaphoid subluxation on sagittal magnetic resonance imaging as a marker for scapholunate ligament tear. J Hand Surg Am 42(9):717–721. https://doi.org/10.1016/j.jhsa.2017.06.015
Hendrix N, Hendrix W, van Dijke K, Maresch B, Maas M, Bollen S, Scholtens A, de Jonge M, Ong LS, van Ginneken B, Rutten M (2022) Musculoskeletal radiologist-level performance by using deep learning for detection of scaphoid fractures on conventional multi-view radiographs of hand and wrist. Eur Radiol. https://doi.org/10.1007/s00330-022-09205-4
Article PubMed PubMed Central Google Scholar
Langerhuizen DWG, Bulstra AEJ, Janssen SJ, Ring D, Kerkhoffs G, Jaarsma RL, Doornberg JN (2020) Is deep learning on par with human observers for detection of radiographically visible and occult fractures of the scaphoid? Clin Orthop Relat Res 478(11):2653–2659. https://doi.org/10.1097/CORR.0000000000001318
Article PubMed PubMed Central Google Scholar
Ozkaya E, Topal FE, Bulut T, Gursoy M, Ozuysal M, Karakaya Z (2020) Evaluation of an artificial intelligence system for diagnosing scaphoid fracture on direct radiography. Eur J Trauma Emerg Surg. https://doi.org/10.1007/s00068-020-01468-0
Yoon AP, Lee YL, Kane RL, Kuo CF, Lin C, Chung KC (2021) Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs. JAMA Netw Open 4(5):e216096. https://doi.org/10.1001/jamanetworkopen.2021.6096
Article PubMed PubMed Central Google Scholar
Lee BD, Lee MS (2021) Automated bone age assessment using artificial intelligence: the future of bone age assessment. Korean J Radiol 22(5):792–800. https://doi.org/10.3348/kjr.2020.0941
Article PubMed PubMed Central Google Scholar
Archer H, Reine S, Alshaikhsalama A, Wells J, Kohli A, Vazquez L, Hummer A, DiFranco MD, Ljuhar R, Xi Y, Chhabra A (2022) Artificial intelligence-generated hip radiological measurements are fast and adequate for reliable assessment of hip dysplasia : an external validation study. Bone Jt Open 3(11):877–884. https://doi.org/10.1302/2633-1462.311.BJO-2022-0125.R1
Article PubMed PubMed Central Google Scholar
Schwarz GM, Simon S, Mitterer JA, Frank BJH, Aichmair A, Dominkus M, Hofstaetter JG (2022) Artificial intelligence enables reliable and standardized measurements of implant alignment in long leg radiographs with total knee arthroplasties. Knee Surg Sports Traumatol Arthrosc 30(8):2538–2547. https://doi.org/10.1007/s00167-022-07037-9
Comments (0)