AbdulSalam, S. F., Thowfeik, F. S., & Merino, E. J. (2016). Excessive reactive oxygen species and exotic DNA lesions as an exploitable liability. Biochemistry, 55(38), 5341–5352. https://doi.org/10.1021/acs.biochem.6b00703.
Article CAS PubMed Google Scholar
Adamczyk, B., & Adamczyk-Sowa, M. (2016). New Insights into the Role of Oxidative Stress Mechanisms in the Pathophysiology and Treatment of Multiple Sclerosis. Oxid Med Cell Longev, 2016, 1973834, https://doi.org/10.1155/2016/1973834.
Adamczyk-Sowa, M., Sowa, P., Adamczyk, J., Niedziela, N., Misiolek, H., Owczarek, M., et al. (2016). Effect of melatonin supplementation on plasma lipid hydroperoxides, homocysteine concentration and chronic fatigue syndrome in multiple sclerosis patients treated with interferons-beta and mitoxantrone. Journal of Physiology and Pharmacology, 67(2), 235–242.
Blaser, H., Dostert, C., Mak, T. W., & Brenner, D. (2016). TNF and ROS crosstalk in inflammation. Trends in Cell Biology, 26(4), 249–261. https://doi.org/10.1016/j.tcb.2015.12.002.
Article CAS PubMed Google Scholar
Brambilla, R. (2019). The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathologica, 137(5), 757–783. https://doi.org/10.1007/s00401-019-01980-7.
Article CAS PubMed PubMed Central Google Scholar
Brieger, K., Schiavone, S., Miller, F. J. Jr., & Krause, K. H. (2012). Reactive oxygen species: From health to disease. Swiss Medical Weekly, 142, w13659. https://doi.org/10.4414/smw.2012.13659.
Article CAS PubMed Google Scholar
Buendia, I., Michalska, P., Navarro, E., Gameiro, I., Egea, J., & Leon, R. (2016). Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacology & Therapeutics, 157, 84–104. https://doi.org/10.1016/j.pharmthera.2015.11.003.
Choi, B. Y., Kim, J. H., Kho, A. R., Kim, I. Y., Lee, S. H., Lee, B. E., et al. (2015). Inhibition of NADPH oxidase activation reduces EAE-induced white matter damage in mice. J Neuroinflammation, 12, 104. https://doi.org/10.1186/s12974-015-0325-5.
Article CAS PubMed PubMed Central Google Scholar
Choi, J. H., Oh, J., Lee, M. J., Bae, H., Ko, S. G., Nah, S. Y., et al. (2021). Inhibition of lysophosphatidic acid receptor 1–3 deteriorates experimental autoimmune encephalomyelitis by inducing oxidative stress. J Neuroinflammation, 18(1), 240. https://doi.org/10.1186/s12974-021-02278-w.
Article CAS PubMed PubMed Central Google Scholar
Chu, F., Shi, M., Zheng, C., Shen, D., Zhu, J., Zheng, X., et al. (2018). The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 318, 1–7. https://doi.org/10.1016/j.jneuroim.2018.02.015.
Article CAS PubMed Google Scholar
Constantinescu, C. S., Farooqi, N., O’Brien, K., & Gran, B. (2011). Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). British Journal of Pharmacology, 164(4), 1079–1106. https://doi.org/10.1111/j.1476-5381.2011.01302.x.
Article CAS PubMed PubMed Central Google Scholar
Di Meo, S., Reed, T. T., Venditti, P., & Victor, V. M. (2016). Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid Med Cell Longev, 2016, 1245049, https://doi.org/10.1155/2016/1245049.
Ding, C., Li, Y., Sun, Y., Wu, Y., Wang, F., Liu, C., et al. (2022). Sinomenium acutum: A Comprehensive Review of its Botany, Phytochemistry, Pharmacology and clinical application. American Journal of Chinese Medicine, 50(5), 1219–1253. https://doi.org/10.1142/S0192415X22500501.
Article CAS PubMed Google Scholar
Fan, H., Shu, Q., Guan, X., Zhao, J., Yan, J., Li, X., et al. (2017). Sinomenine protects PC12 neuronal cells against H2O2-induced cytotoxicity and oxidative stress via a ROS-dependent Up-regulation of endogenous antioxidant system. Cellular and Molecular Neurobiology, 37(8), 1387–1398. https://doi.org/10.1007/s10571-017-0469-1.
Article CAS PubMed Google Scholar
Gao, W. J., Liu, J. X., Xie, Y., Luo, P., Liu, Z. Q., Liu, L., et al. (2021). Suppression of macrophage migration by down-regulating Src/FAK/P130Cas activation contributed to the anti-inflammatory activity of sinomenine. Pharmacological Research, 167, 105513. https://doi.org/10.1016/j.phrs.2021.105513.
Article CAS PubMed Google Scholar
Gu, B., Zeng, Y., Yin, C., Wang, H., Yang, X., Wang, S., et al. (2012). Sinomenine reduces iNOS expression via inhibiting the T-bet IFN-gamma pathway in experimental autoimmune encephalomyelitis in rats. J Biomed Res, 26(6), 448–455. https://doi.org/10.7555/JBR.26.20110114.
Article CAS PubMed PubMed Central Google Scholar
Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., et al. (2010). Cellular mechanisms of IL-17-induced blood-brain barrier disruption. The Faseb Journal, 24(4), 1023–1034. https://doi.org/10.1096/fj.09-141978.
Article CAS PubMed Google Scholar
Jiang, X. M., Hu, J. H., Wang, L. L., Ma, C., Wang, X., & Liu, X. L. (2018). Ulinastatin alleviates neurological deficiencies evoked by transient cerebral ischemia via improving autophagy, Nrf-2-ARE and apoptosis signals in hippocampus. Physiological Research, 67(4), 637–646. https://doi.org/10.33549/physiolres.933780.
Article CAS PubMed Google Scholar
Jiménez-Villegas, J., Kirby, J., Mata, A., Cadenas, S., Turner, M. R., Malaspina, A., et al. (2022). Dipeptide repeat Pathology in C9orf72-ALS is Associated with Redox, mitochondrial and NRF2 pathway imbalance. Antioxidants (Basel), 11(10), https://doi.org/10.3390/antiox11101897.
Kim, R. Y., Hoffman, A. S., Itoh, N., Ao, Y., Spence, R., Sofroniew, M. V., et al. (2014). Astrocyte CCL2 sustains immune cell infiltration in chronic experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 274(1–2), 53–61. https://doi.org/10.1016/j.jneuroim.2014.06.009.
Article CAS PubMed PubMed Central Google Scholar
Kim, T. W., Kim, Y., Jung, W., Kim, D. E., Keum, H., Son, Y., et al. (2021). Bilirubin nanomedicine ameliorates the progression of experimental autoimmune encephalomyelitis by modulating dendritic cells. Journal of Controlled Release : Official Journal of the Controlled Release Society, 331, 74–84. https://doi.org/10.1016/j.jconrel.2021.01.019.
Article CAS PubMed Google Scholar
Kong, W., Hooper, K. M., & Ganea, D. (2016). The natural dual cyclooxygenase and 5-lipoxygenase inhibitor flavocoxid is protective in EAE through effects on Th1/Th17 differentiation and macrophage/microglia activation. Brain, Behavior, and Immunity, 53, 59–71. https://doi.org/10.1016/j.bbi.2015.11.002.
Article CAS PubMed Google Scholar
Kuo, P. C., Weng, W. T., Scofield, B. A., Paraiso, H. C., Brown, D. A., Wang, P. Y., et al. (2020). Dimethyl itaconate, an itaconate derivative, exhibits immunomodulatory effects on neuroinflammation in experimental autoimmune encephalomyelitis. J Neuroinflammation, 17(1), 138. https://doi.org/10.1186/s12974-020-01768-7.
Article CAS PubMed PubMed Central Google Scholar
Lassmann, H., van Horssen, J., & Mahad, D. (2012). Progressive multiple sclerosis: Pathology and pathogenesis. Nat Rev Neurol, 8(11), 647–656. https://doi.org/10.1038/nrneurol.2012.168.
Article CAS PubMed Google Scholar
Li, Q., Zhou, W., Wang, Y., Kou, F., Lyu, C., & Wei, H. (2020). Metabolic mechanism and anti-inflammation effects of sinomenine and its major metabolites N-demethylsinomenine and sinomenine-N-oxide. Life Sciences, 261, 118433. https://doi.org/10.1016/j.lfs.2020.118433.
Article CAS PubMed Google Scholar
Liang, L., Gao, C., Luo, M., Wang, W., Zhao, C., Zu, Y., et al. (2013). Dihydroquercetin (DHQ) induced HO-1 and NQO1 expression against oxidative stress through the Nrf2-dependent antioxidant pathway. Journal of Agriculture and Food Chemistry, 61(11), 2755–2761. https://doi.org/10.1021/jf304768p.
Liddell, J. R. (2017). Are astrocytes the predominant cell type for activation of Nrf2 in aging and neurodegeneration? Antioxidants (Basel), 6(3), https://doi.org/10.3390/antiox6030065.
Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787–795. https://doi.org/10.1038/nature05292.
Article CAS PubMed Google Scholar
Mayo, L., Trauger, S. A., Blain, M., Nadeau, M., Patel, B., Alvarez, J. I., et al. (2014). Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nature Medicine, 20(10), 1147–1156. https://doi.org/10.1038/nm.3681.
Article CAS PubMed PubMed Central Google Scholar
McGinley, A. M., Edwards, S. C., Raverdeau, M., & Mills, K. H. G. (2018). Th17cells, gammadelta T cells and their interplay in EAE and multiple sclerosis. Journal of Autoimmunity. https://doi.org/10.1016/j.jaut.2018.01.001.
Mendiola, A. S., Ryu, J. K., Bardehle, S., Meyer-Franke, A., Ang, K. K., Wilson, C., et al. (2020). Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nature Immunology, 21(5), 513–524. https://doi.org/10.1038/s41590-020-0654-0.
Article CAS PubMed PubMed Central Google Scholar
Michalickova, D., Kotur-Stevuljevic, J., Miljkovic, M., Dikic, N., Kostic-Vucicevic, M., Andjelkovic, M., et al. (2018). Effects of Probiotic supplementation on selected parameters of blood prooxidant-antioxidant balance in Elite athletes: A double-blind randomized placebo-controlled study. J Hum Kinet, 64, 111–122. https://doi.org/10.1515/hukin-2017-0203.
Article PubMed PubMed Central Google Scholar
Michalickova, D., Sima, M., & Slanar, O. (2020). New insights in the mechanisms of impaired redox signaling and its interplay with inflammation and immunity in multiple sclerosis. Physiological Research, 69(1), 1–19. https://doi.org/10.33549/physiolres.934276.
Article CAS PubMed Google Scholar
Mills, K. H. (2011). TLR-dependent T cell activation in autoimmunity. Nature Reviews Immunology, 11(12), 807–822. https://doi.org/10.1038/nri3095.
Comments (0)