Aaronson, S. A. (1991). Growth factors and cancer. Science, 254, 1146–1153. https://doi.org/10.1126/science.1659742
Article CAS PubMed Google Scholar
Balogun, T. A., Ipinloju, N., Abdullateef, O. T., Moses, S. I., Omoboyowa, D. A., James, A. C., Saibu, O. A., Akinyemi, W. F., & Oni, E. A. (2001). Computational evaluation of bioactive compounds from Colocasia affinis Schott as a novel EGFR inhibitor for cancer treatment. Cancer Informatics, 20, 11769351211049244. https://doi.org/10.1177/11769351211049244
Carvalho, B. S., & Irizarry, R. A. (2010). A framework for oligonucleotide microarray preprocessing. Bioinformatics, 26, 2363–2367. https://doi.org/10.1093/bioinformatics/btq431
Article CAS PubMed PubMed Central Google Scholar
Casciati, A., Tanori, M., Manczak, R., Saada, S., Tanno, B., Giardullo, P., Porcù, E., Rampazzo, E., Persano, L., Viola, G., Dalmay, C., Lalloué, F., Pothier, A., Merla, C., & Mancuso, M. (2020). Human medulloblastoma cell lines: Investigating on cancer stem cell-like phenotype. Cancers (basel), 12, 226. https://doi.org/10.3390/cancers12010226
Article CAS PubMed Google Scholar
Cavalli, F. M. G., Remke, M., Rampasek, L., Peacock, J., Shih, D. J. H., Luu, B., Garzia, L., Torchia, J., Nor, C., Morrissy, A. S., Agnihotri, S., Thompson, Y. Y., Kuzan-Fischer, C. M., Farooq, H., Isaev, K., Daniels, C., Cho, B. K., Kim, S. K., Wang, K. C., … Taylor, M. D. (2017). Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell, 31(6), 737-754.e6. https://doi.org/10.1016/j.ccell.2017.05.005
Article CAS PubMed PubMed Central Google Scholar
Downing, J. R., Wilson, R. K., Zhang, J., Mardis, E. R., Pui, C. H., Ding, L., Ley, T. J., & Evans, W. E. (2012). The pediatric cancer genome project. Nature Genetics, 44, 619–622. https://doi.org/10.1038/ng.2287
Article CAS PubMed PubMed Central Google Scholar
Edgar, R., Domrachev, M., & Lash, A. E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30, 207–210. https://doi.org/10.1093/nar/30.1.207
Article CAS PubMed PubMed Central Google Scholar
Ferdousi, F., Sasaki, K., Uchida, Y., Ohkohchi, N., Zheng, Y. W., & Isoda, H. (2019). Exploring the potential role of rosmarinic acid in neuronal differentiation of human amnion epithelial cells by microarray gene expression profiling. Frontiers in Neuroscience, 13, 779. https://doi.org/10.3389/fnins.2019.00779
Article PubMed PubMed Central Google Scholar
Freire, N. H., Jaeger, M. D. C., de Farias, C. B., Nör, C., Souza, B. K., Gregianin, L., Brunetto, A. T., & Roesler, R. (2023). Targeting the epigenome of cancer stem cells in pediatric nervous system tumors. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-022-04655-2
Gui, C. Y., Ngo, L., Xu, W. S., Richon, V. M., & Marks, P. A. (2004). Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proceedings of the National Academy of Sciences of the United States of America, 101, 1241–1246. https://doi.org/10.1073/pnas.0307708100
Article CAS PubMed PubMed Central Google Scholar
Hu, Q., Zhang, L., Wen, J., Wang, S., Li, M., Feng, R., Yang, X., & Li, L. (2010). The EGF receptor-sox2-EGF receptor feedback loop positively regulates the self-renewal of neural precursor cells. Stem Cells, 28, 279–286. https://doi.org/10.1002/stem.246
Article CAS PubMed Google Scholar
Huang, L., Chen, J., Quan, J., & Xiang, D. (2021). Rosmarinic acid inhibits proliferation and migration, promotes apoptosis and enhances cisplatin sensitivity of melanoma cells through inhibiting ADAM17/EGFR/AKT/GSK3β axis. Bioengineered, 12, 3065–3076. https://doi.org/10.1080/21655979.2021.1941699
Article CAS PubMed PubMed Central Google Scholar
Jaeger, M., Ghisleni, E. C., Cardoso, P. S., Siniglaglia, M., Falcon, T., Brunetto, A. T., Brunetto, A. L., de Farias, C. B., Taylor, M. D., Nör, C., Ramaswamy, V., & Roesler, R. (2020). HDAC and MAPK/ERK inhibitors cooperate to reduce viability and stemness in medulloblastoma. Journal of Molecular Neuroscience, 70, 981–992. https://doi.org/10.1007/s12031-020-01505-y
Jaeger, M., Nör, C., de Farias, C. B., Abujamra, A. L., Schwartsmann, G., Brunetto, A. L., & Roesler, R. (2013). Anti-EGFR therapy combined with neuromedin B receptor blockade induces the death of DAOY medulloblastoma cells. Child’s Nervous System, 29, 2145–2150. https://doi.org/10.1007/s00381-013-2290-6
Jang, J. W., Song, Y., Kim, S. H., Kim, J., & Seo, H. R. (2017). Potential mechanisms of CD133 in cancer stem cells. Life Sciences, 184, 25–29. https://doi.org/10.1016/j.lfs.2017.07.008
Article CAS PubMed Google Scholar
Jang, Y. G., Hwang, K. A., & Choi, K. C. (2018). Rosmarinic acid, a component of rosemary tea, induced the cell cycle arrest and apoptosis through modulation of HDAC2 expression in prostate cancer cell lines. Nutrients, 10, 1784. https://doi.org/10.3390/nu10111784
Article CAS PubMed PubMed Central Google Scholar
Jones, B. L. (2012). The challenge of quality care for family caregivers in pediatric cancer care. Seminars in Oncology Nursing, 28, 213–220. https://doi.org/10.1016/j.soncn.2012.09.003
Juraschka, K., & Taylor, M. D. (2019). Medulloblastoma in the age of molecular subgroups: A review. Journal of Neurosurgery: Pediatrics, 24, 353–363. https://doi.org/10.3171/2019.5.PEDS18381
Kauffmann, A., Gentleman, R., & Huber, W. (2009). arrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics, 25, 415–416. https://doi.org/10.1093/bioinformatics/btn647
Article CAS PubMed Google Scholar
Khan, M. S. S., Iqbal, M. A., Asif, M., Azam, T., Al-Mansoub, M., Haque, R. S. M. A., Basheer, M. K. A., Abdul Majid, A. S., & Abdul Majid, A. M. S. (2019). Anti-GBM potential of Rosmarinic acid and its synthetic derivatives via targeting IL17A mediated angiogenesis pathway. Journal of Angiotherapy, 3, 097–122. https://doi.org/10.25163/angiotherapy.21206512012110519
Kim, J., Lo, L., Dormand, E., & Anderson, D. J. (2003). SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron, 38, 17–31. https://doi.org/10.1016/s0896-6273(03)00163-6
Article CAS PubMed Google Scholar
Kuo, Y. C., & Rajesh, R. (2017). Targeted delivery of rosmarinic acid across the blood-brain barrier for neuronal rescue using polyacrylamide-chitosan-poly(lactide-co-glycolide) nanoparticles with surface cross-reacting material 197 and apolipoprotein E. International Journal of Pharmaceutics, 528(1–2), 228–241. https://doi.org/10.1016/j.ijpharm.2017.05.039
Article CAS PubMed Google Scholar
Lausen, B., & Schumacher, M. (1992). Maximally selected rank statistics. Biometrics, 48, 73. https://doi.org/10.2307/2532740
Li, Y., Dowbenko, D., & Lasky, L. A. (2002). AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. Journal of Biological Chemistry, 277, 11352–11361. https://doi.org/10.1074/jbc.M109062200
Article CAS PubMed Google Scholar
Liu, Y., Xu, X., Tang, H., Pan, Y., Hu, B., & Huang, G. (2021). Rosmarinic acid inhibits cell proliferation, migration, and invasion and induces apoptosis in human glioma cells. International Journal of Molecular Medicine, 47, 67. https://doi.org/10.3892/ijmm.2021.4900
Article CAS PubMed PubMed Central Google Scholar
Ma, P., & Schultz, R. M. (2008). Histone deacetylase 1 (HDAC1) regulates histone acetylation, development, and gene expression in preimplantation mouse embryos. Developmental Biology, 319, 110–120. https://doi.org/10.1016/j.ydbio.2008.04.011
Article CAS PubMed Google Scholar
Messeha, S. S., Zarmouh, N. O., Asiri, A., & Soliman, K. F. A. (2020). Rosmarinic acid-induced apoptosis and cell cycle arrest in triple-negative breast cancer cells. European Journal of Pharmacology, 885, 173419. https://doi.org/10.1016/j.ejphar.2020.173419
Article CAS PubMed PubMed Central Google Scholar
Nadeem, M., Imran, M., Aslam Gondal, T., Imran, A., Shahbaz, M., Amir, M. R., Sajid, W. M., Qaisrani, B. T., Atif, M., Hussain, G., Salehi, B., Adrian, A. E., Martorell, M., Sharifi-Rad, J., Cho, C. W., & Martins, N. (2019). Therapeutic potential of rosmarinic acid: A comprehensive review. Applied Sciences, 9, 3139. https://doi.org/10.3390/app9153139
Noguchi-Shinohara, M., Ono, K., Hamaguchi, T., Iwasa, K., Nagai, T., Kobayashi, S., Nakamura, H., & Yamada, M. (2015). Pharmacokinetics, safety and tolerability of Melissa officinalis extract which contained rosmarinic acid in healthy individuals: A randomized controlled Trial. PLoS ONE, 15(5), e0126422. https://doi.org/10.1371/journal.pone.0126422
Noguchi-Shinohara, M., Ono, K., Hamaguchi, T., Nagai, T., Kobayashi, S., Komatsu, J., Samuraki-Yokohama, M., Iwasa, K., Yokoyama, K., Nakamura, H., & Yamada, M. (2020). Safety and efficacy of Melissa officinalis extract containing rosmarinic acid in the prevention of Alzheimer’s disease progression. Science and Reports, 10(1), 18627. https://doi.org/10.1038/s41598-020-73729-2
Nör, C., Sassi, F. A., de Farias, C. B., Schwartsmann, G., Abujamra, A. L., Lenz, G., Brunetto, A. L., & Roesler, R. (2013). The histone deacetylase inhibitor sodium butyrate promotes cell death and differentiation and reduces neurosphere formation in human medulloblastoma cells. Molecular Neurobiology, 48, 533–543. https://doi.org/10.1007/s12035-013-8441-7
Comments (0)