K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh, Nanomed. Nanotechnol. Biol. Med. 6, 257 (2010). https://doi.org/10.1016/j.nano.2009.07.002
S. Iravani, H. Korbekandi, S. V. Mirmohammadi, et al., Res. Pharm. Sci. 9, 385 (2014).
V. Parashar, R. Parashar, B. Sharma, et al., Dig. J. Nanomater. Biostructures 4, 45 (2009).
S. H. Lee and B.-H. Jun, Int. J. Mol. Sci. 20, 865 (2019). https://doi.org/10.3390/ijms20040865
T. A. Voeikova, O. A. Zhuravliova, N. V. Bulushova, et al., Mol. Genet. Microbiol. Virusol. 32, 204 (2017). https://doi.org/10.3103/S0891416817040103
J. Singh, T. Dutta, K.-H. Kim, et al., J. Nanobiotechnol. 16, 84 (2018). https://doi.org/10.1186/s12951-018-0408-4
C. Bucking, A. Piepenbrock, A. Kappler, et al., Microbiology 158, 2144 (2012). https://doi.org/10.1099/mic.0.058404-0
S. Pirbadian, S. E. Barchinger, K. M. Leung, et al., Proc. Natl. Acad. Sci. 111, 12883 (2014). https://doi.org/10.1073/pnas.1410551111
M. Breuer, K. M. Rosso, J. Blumberger, et al., J. RSI 12, 20141117 (2014). https://doi.org/10.1098/rsif.2014.1117
G. Sturm, K. Richter, A. Doetsch, et al., ISME J. 9, 1802 (2015). https://doi.org/10.1038/ismej.2014.264
S. M. Strycharz-Glaven, R. M. Snider, A. Guiseppi-Elie, et al., Energy Environ. Sci. 4, 4366 (2011). https://doi.org/10.1039/C1EE01753E
M. J. Edwards, G. F. White, M. Norman, et al., Transfer. Sci. Rep. 5, 11677 (2015). https://doi.org/10.1038/srep11677
A. Okamoto, K. Hashimoto, K. H. Nealson, et al., Proc. Natl. Acad. Sci. 110, 7856 (2013). https://doi.org/10.1073/pnas.1220823110
P. Macheroux, B. Kappes, and S. E. Ealick, FEBS J. 278, 2625 (2011). https://doi.org/10.1111/j.1742-4658.2011.08202.x
V. D. Rajput, T. Minkina, L. Richard, et al., Appl. Environ. Microbiol. 87, e01390-21 (2021). https://doi.org/10.1128/AEM.01390-21
A. Rozhin, S. Batasheva, M. Kruychkova, et al., Micromachines 12, 1480 (2021). https://doi.org/10.3390/mi12121480
M. Salouti, Nanoscience and Plant-Soil System (Springer Nature, Switzerland, 2017). https://doi.org/10.1007/978-3-319-46835-8_2
J. Huang, L. Lin, Q. Li, et al., Ind. Eng. Chem. Res. 47, 6081 (2008). https://doi.org/10.1021/ie701698e
S. H. EL-Moslamy, Sci. Rep. 8, 3820 (2018). https://doi.org/10.1038/s41598-018-22134-x
M. Wypij, T. Jedrzejewski, J. Trzcinska-Wencel, et al., Front. Microbiol. 12, 632505 (2021). https://doi.org/10.3389/fmicb.2021.632505
M. Robles-Martínez, J. F. C. González, F. J. Pérez-Vázquez, et al., Chem. Biodivers. 16, e1800525 (2019). https://doi.org/10.1002/cbdv.201800525
T. Dutta and N. N. Ghosh, M. Das, et al., J. Environ. Chem. Eng. 8, 104019 (2020). https://doi.org/10.1016/j.jece.2020.104019
N. Mujaddidi, S. Nisa, S. Al Ayoubi, et al., Saudi J. Biol. Sci. 28, 6432 (2021). https://doi.org/10.1016/j.sjbs.2021.07.009
A. Salleh, R. Naomi, N. D. Utami, et al., Nanomaterials 10, 1566 (2020). https://doi.org/10.3390/nano10081566
S. W. Kim, J. H. Jung, K. Lamsal, et al., Mycobiology 40, 53 (2012). https://doi.org/10.5941/MYCO.2012.40.1.053
H. H. Lara, N. V. Ayala-Núnez, L. D. C. I. Turrent, et al., World J. Microbiol. Biotechnol. 26, 615 (2010). https://doi.org/10.1007/s11274-009-0211-3
O. Velgosova, E. Čižmárová, J. Málek, et al., Int. J. Miner. Metall. Mater. 24, 1177 (2017). https://doi.org/10.1007/s12613-017-1508-0
K. M. Abdelsalam, N. A. Shaltout, H. A. Ibrahim, et al., Oceanologia 64, 35 (2022). https://doi.org/10.1016/j.oceano.2021.08.004
S. S. Abd Elsalam, R. H. Taha, A. M. Tawfeik, et al., Egypt. J. Hosp. Med. 70, 1494–1507 (2018). https://doi.org/10.12816/004467511
A. Shivashankarappa and K. R. Sanjay, Braz. J. Microbiol. 51, 939 (2020). https://doi.org/10.1007/s42770-020-00238-9
VKPM (National Bioresource Center of the Russian National Collection of Industrial Microorganisms). https://vkpm.genetika.ru/
T. A. Voeikova, O. A. Zhuravliova, N. V. Bulushova, et al., Appl. Biochem. Microbiol. 54, 800 (2018). https://doi.org/10.1134/S0003683818080070
O. A. Zhuravliova, T. A. Voeikova, V. S. Kuligin, et al., Microbiol. Epidem. Immunobiol. 98, 416 (2021). https://doi.org/10.36233/0372-9311-89
V. S. Kuligin, O. A. Zhuravliova, T. A. Voeikova, et al., Biotekhnologiya 36, 127 (2020). https://doi.org/10.21519/0234-2758-2020-36-6-127-137
J. Schindelin, I. Arganda-Carreras, E. Frise, et al., Nat. Methods 9, 676 (2012). https://doi.org/10.1038/nmeth.2019
A. K. Suresh, D. A. Pelletier, W. Wang, et al., Env. Sci. Tech. 44 (13), 5210 (2010). https://doi.org/10.1021/es903684r
E. Tomaszewska, K. Soliwoda, K. Kadziola, et al., J. Nanomater. 2013, 60 (2013). https://doi.org/10.1155/2013/313081
O. A. Zhuravliova, T. A. Voeikova, M. Kh. Khaddazh, et al., Mol. Genet. Microbiol. Virusol. 33, 233 (2018). https://doi.org/10.3103/S0891416818040092
C. D. Walkey and W. C. W. Chan, Chem. Soc. Rev. 41, 2780 (2012). https://doi.org/10.1039/C1CS15233E
H. C. A. Murthy, T. D. Zeleke, C. R. Ravikumar, et al., Mater. Res. Express 7, 055016 (2020). https://doi.org/10.1088/2053-1591/ab9252
R. Lima, A. B. Seabra, and N. Duran, J. Appl. Toxicol. 32, 867 (2012). https://doi.org/10.1002/jat.2780
M. Ovais, T. A. Khalil, A. Raza, et al., Nanomedicine 11, 3157 (2016). https://doi.org/10.2217/nnm-2016-0279
I. Khan, A. Bahuguna, M. Krishnan, et al., Sci. Total Environ. 679, 365 (2019). https://doi.org/10.1016/j.scitotenv.2019.05.045
X. Cui, Z. Zhong, R. Xia, et al., Arab. J. Chem. 15, 104142 (2022). https://doi.org/10.1016/j.arabjc.2022.104142
M. Rai, A. P. Ingle, J. Trzcińska-Wencel, et al., Nanomaterials 11, 2901 (2021). https://doi.org/10.3390/nano11112901
Comments (0)