S. Tirard, Cahiers François Viète II-6/7, 137 (2015). https://doi.org/10.4000/cahierscfv.2968
D. E. Cameron, C. J. Bashor, and J. J. Collins, Nat. Rev. Microbiol. 12, 381 (2014). https://doi.org/10.1038/nrmicro3239
F. Meng and T. Ellis, Nat. Commun. 11, 5174 (2020). https://doi.org/10.1038/s41467-020-19092-2
C. Guindani, L. C. Silva, S. Cao, et al., Angew. Chem. Int. Ed. 61, e202110855 (2022). https://doi.org/10.1002/anie.202110855
J. C. Venter, J. I. Glass, C. A. Hutchison, and S. Vashee, Cell 185, 2708 (2022). https://doi.org/10.1016/j.cell.2022.06.046
K. L. Garner, Essays Biochem. 65, 791 (2021). https://doi.org/10.1042/ebc20200059
L. Marucci, M. Barberis, J. Karr, et al., Front. Bioeng. Biotechnol. 8 (2020). https://doi.org/10.3389/fbioe.2020.00942
H. H. McAdams and L. Shapiro, Science 269, 650 (1995). https://doi.org/10.1126/science.7624793
V. Singh, Syst. Synth. Biol. 8, 271 (2014). https://doi.org/10.1007/s11693-014-9154-6
L. Buecherl, T. Mitchell, J. Scott-Brown, et al., J. Integr. Bioinform. 20, 20220058 (2023). https://doi.org/10.1515/jib-2022-0058
A. Costello and A. H. Badran, Trends Biotechnol. 39, 59 (2021). https://doi.org/10.1016/j.tibtech.2020.05.013
M.-E. Guazzaroni, R. Silva-Rocha, and R. J. Ward, Microb. Biotechnol. 8, 52 (2015). https://doi.org/10.1111/1751-7915.12146
N. B. W. Macfarlane, J. Adams, E. L. Bennett, et al., iScience 25, 105423 (2022). https://doi.org/10.1016/j.isci.2022.105423
Y. Zhang, W. Ding, Z. Wang, et al., Adv. Biol. 5, 2000252 (2021). https://doi.org/10.1002/adbi.202000252
J. Fredens, K. Wang, D. de la Torre, et al., Nature 569, 514 (2019). https://doi.org/10.1038/s41586-019-1192-5
F. Machens, S. Balazadeh, B. Mueller-Roeber, and K. Messerschmidt, Front. Bioeng. Biotechnol. 5, 63 (2017). https://doi.org/10.3389/fbioe.2017.00063
C. M. Schmidt and C. D. Smolke, Cold Spring Harb. Perspect. Biol. 11, a032532 (2019). https://doi.org/10.1101/cshperspect.a032532
S. Cui, X. Lv, X. Xu, et al., ACS Synth. Biol. 10, 1587 (2021). https://doi.org/10.1021/acssynbio.1c00073
X. Lv, A. Hueso-Gil, X. Bi, et al., Curr. Opin. Biotechnol. 76, 102724 (2022). https://doi.org/10.1016/j.copbio.2022.102724
D. Endy, Nature 438, 449 (2005). https://doi.org/10.1038/nature04342
N. Gurdo, D. C. Volke, and P. I. Nikel, Trends Biotechnol. 40, 1148 (2022). https://doi.org/10.1016/j.tibtech.2022.03.004
D. A. Hall, N. A. Manabhan, C. Choi, et al., in Proceedings of IEEE International Solid- State Circuits Conference (ISSCC) 2022, Vol. 65, p. 1. https://doi.org/10.1109/ISSCC42614.2022.9731770
R. R. Gallagher, Z. Li, A. O. Lewis, and F. J. Isaacs, Nat. Protoc. 9, 2301 (2014). https://doi.org/10.1038/nprot.2014.082
A. Deng, Z. Sun, T. Wang, et al., Front. Microbiol. 12, 714449 (2021). https://doi.org/10.3389/fmicb.2021.714449
L.-F. Song, Z.-H. Deng, Z.-Y. Gong, et al., Front. Bioeng. Biotechnol. 9, 89797 (2021). https://doi.org/10.3389/fbioe.2021.689797
A. Hoose, R. Vellacott, M. Storch, et al., Nat. Rev. Chem. 7, 144 (2023). https://doi.org/10.1038/s41570-022-00456-9
V. K. Mutalik, J. C. Guimaraes, G. Cambray, et al., Nat. Methods 10, 347 (2013). https://doi.org/10.1038/nmeth.2403
www.synbiobeta.com
https://igem.org
K. J. Blight, A. A. Kolykhalov, and C. M. Rice, Science 290, 1972 (2000). https://doi.org/10.1126/science.290.5498.1972
I. S. Pretorius and J. D. Boeke, FEMS Yeast Res. 18, foy032 (2018). https://doi.org/10.1093/femsyr/foy032
M. J. Lajoie, A. J. Rovner, D. B. Goodman, et al., Science 342, 357 (2013). https://doi.org/10.1126/science.1241459
H. H. Wang, F. J. Isaacs, P. A. Carr, et al., Nature 460, 894 (2009). https://doi.org/10.1038/nature08187
M. M. Becker, R. L. Graham, E. F. Donaldson, et al., Proc. Nat. Acad. Sci. 105, 19944 (2008). https://doi.org/10.1073/pnas.0808116105
D. G. Gibson, J. I. Glass, C. Lartigue, et al., Science 329, 52 (2010). https://doi.org/10.1126/science.1190719
K. S. Boles, K. Kannan, J. Gill, et al., Nat. Biotechnol. 35, 672 (2017). https://doi.org/10.1038/nbt.3859
J. Champer, A. Buchman, and O. S. Akbari, Nat. Rev. Genet. 17, 146 (2016). https://doi.org/10.1038/nrg.2015.34
C. E. Hodgman and M. C. Jewett, Metab. Eng. 14, 261 (2012). https://doi.org/10.1016/j.ymben.2011.09.002
M. Ermakova, F. R. Danila, R. T. Furbank, and S. von Caemmerer, Plant J. 101, 940 (2020). https://doi.org/10.1111/tpj.14562
R. Zilinskas, Nat. Biotechnol. 2, 610 (1984). https://doi.org/10.1038/nbt0784-610
N. Mao, N. Aggarwal, C. L. Poh, et al., Adv. Genet. 2, e10038 (2021). https://doi.org/10.1002/ggn2.10038
N. Gunitseva, M. Evteeva, A. Borisova, et al., Int. J. Mol. Sci. 24, 6894 (2023). https://doi.org/10.3390/ijms24086894
R. Vasilev, N. Gunitseva, R. Shebanova, et al., Int. J. Mol. Sci. 23, 9289 (2022). https://doi.org/10.3390/ijms23169289
National Academies of Sciences, Engineering, and Medicine. Biodefense in the Age of Synthetic Biology (Natl. Academies Press, Washington, DC, 2018).
P. Opgenorth, Z. Costello, T. Okada, et al., ACS Synth. Biol. 8, 1337 (2019). https://doi.org/10.1021/acssynbio.9b00020
P. Carbonell, A. J. Jervis, C. J. Robinson, et al., Commun. Biol. 1, 1 (2018). https://doi.org/10.1038/s42003-018-0076-9
Comments (0)