Bai, Y., Zhang, Y., Han, B., Yang, L., Chen, X., Huang, R., et al. (2018). Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity. Journal of Neuroscience, 38(1), 32–50. https://doi.org/10.1523/jneurosci.1348-17.2017
Article CAS PubMed Google Scholar
Chen, J., Zhang, C., Jiang, H., Li, Y., Zhang, L., Robin, A., et al. (2005). Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. Journal of Cerebral Blood Flow and Metabolism, 25(2), 281–290. https://doi.org/10.1038/sj.jcbfm.9600034
Article CAS PubMed Google Scholar
Du, H., Zhao, Y., He, J., Zhang, Y., Xi, H., Liu, M., et al. (2016). YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nature Communications, 7, 12626. https://doi.org/10.1038/ncomms12626
Article CAS PubMed PubMed Central Google Scholar
Fabian, M. R., Sonenberg, N., & Filipowicz, W. (2010). Regulation of mRNA translation and stability by microRNAs. Annual Review of Biochemistry, 79, 351–379. https://doi.org/10.1146/annurev-biochem-060308-103103
Article CAS PubMed Google Scholar
Feske, S. K. (2021). Ischemic stroke. American Journal of Medicine, 134(12), 1457–1464. https://doi.org/10.1016/j.amjmed.2021.07.027
Gülke, E., Gelderblom, M., & Magnus, T. (2018). Danger signals in stroke and their role on microglia activation after ischemia. Therapeutic Advances in Neurological Disorders, 11, 1756286418774254. https://doi.org/10.1177/1756286418774254
Article CAS PubMed PubMed Central Google Scholar
Hernández, I. H., Villa-González, M., Martín, G., Soto, M., & Pérez-Álvarez, M. J. (2021). Glial cells as therapeutic approaches in brain ischemia-reperfusion injury. Cells. https://doi.org/10.3390/cells10071639
Article PubMed PubMed Central Google Scholar
Huang, R., Zhang, W., Li, W., Gao, Y., Zheng, D., & Bi, G. (2022). Overexpressing circ_0000831 is sufficient to inhibit neuroinflammation and vertigo in cerebral ischemia through a miR-16–5p-dependent mechanism. Experimental Neurology. https://doi.org/10.1016/j.expneurol.2022.114047
Jiang, C. T., Wu, W. F., Deng, Y. H., & Ge, J. W. (2020). Modulators of microglia activation and polarization in ischemic stroke (Review). Molecular Medicine Reports, 21(5), 2006–2018. https://doi.org/10.3892/mmr.2020.11003
Article CAS PubMed PubMed Central Google Scholar
Jin, L., Zhu, Z., Hong, L., Qian, Z., Wang, F., & Mao, Z. (2023). ROS-responsive 18β-glycyrrhetic acid-conjugated polymeric nanoparticles mediate neuroprotection in ischemic stroke through HMGB1 inhibition and microglia polarization regulation. Bioact Mater, 19, 38–49. https://doi.org/10.1016/j.bioactmat.2022.03.040
Article CAS PubMed Google Scholar
Kanazawa, M., Ninomiya, I., Hatakeyama, M., Takahashi, T., & Shimohata, T. (2017). Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke. International Journal of Molecular Science. https://doi.org/10.3390/ijms18102135
Liao, S., Sun, H., & Xu, C. (2018). YTH domain: A family of N(6)-methyladenosine (m(6)A) Rraders. Genomics, Proteomics & Bioinformatics, 16(2), 99–107. https://doi.org/10.1016/j.gpb.2018.04.002
Liu, N. N., Dong, Z. L., & Han, L. L. (2018). MicroRNA-410 inhibition of the TIMP2-dependent MAPK pathway confers neuroprotection against oxidative stress-induced apoptosis after ischemic stroke in mice. Brain Research Bulletin, 143, 45–57. https://doi.org/10.1016/j.brainresbull.2018.09.009
Article CAS PubMed Google Scholar
Liu, T., Li, X., Cui, Y., Meng, P., Zeng, G., Wang, Y., et al. (2021). Bioinformatics analysis identifies potential ferroptosis key genes in the pathogenesis of intracerebral hemorrhage. Front Neuroscience. https://doi.org/10.3389/fnins.2021.661663
Liu, Y., Li, Y., Zang, J., Zhang, T., Li, Y., Tan, Z., et al. (2022). CircOGDH is a penumbra biomarker and therapeutic target in acute ischemic stroke. Circulation Research, 130(6), 907–924. https://doi.org/10.1161/circresaha.121.319412
Article CAS PubMed Google Scholar
Liu, Y., Min, J. W., Feng, S., Subedi, K., Qiao, F., Mammenga, E., et al. (2020). Therapeutic role of a cysteine precursor, OTC, in ischemic stroke is mediated by improved proteostasis in mice. Translational Stroke Research, 11(1), 147–160. https://doi.org/10.1007/s12975-019-00707-w
Article CAS PubMed Google Scholar
Michels, M., Sonai, B., & Dal-Pizzol, F. (2017). Polarization of microglia and its role in bacterial sepsis. Journal of Neuroimmunology, 303, 90–98. https://doi.org/10.1016/j.jneuroim.2016.12.015
Article CAS PubMed Google Scholar
Reuter, B., Bugert, P., Stroick, M., Bukow, S., Griebe, M., Hennerici, M. G., et al. (2009). TIMP-2 gene polymorphism is associated with intracerebral hemorrhage. Cerebrovascular Diseases, 28(6), 558–563. https://doi.org/10.1159/000247599
Article CAS PubMed Google Scholar
Saini, V., Guada, L., & Yavagal, D. R. (2021). Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology, 97(20 Suppl 2), S6-s16. https://doi.org/10.1212/wnl.0000000000012781
Siracusa, C., Sabatino, J., Leo, I., Eyileten, C., Postuła, M., & De Rosa, S. (2023). Circular RNAs in ischemic stroke: biological role and experimental models. Biomolecules, 13(2), 214. https://doi.org/10.3390/biom13020214
Article CAS PubMed PubMed Central Google Scholar
Sonkoly, E., Bata-Csorgo, Z., Pivarcsi, A., Polyanka, H., Kenderessy-Szabo, A., Molnar, G., et al. (2005). Identification and characterization of a novel, psoriasis susceptibility-related noncoding RNA gene. PRINS. J Biol Chem, 280(25), 24159–24167. https://doi.org/10.1074/jbc.M501704200
Article CAS PubMed Google Scholar
Thiebaut, A. M., Gauberti, M., Ali, C., Martinez De Lizarrondo, S., Vivien, D., Yepes, M., et al. (2018). The role of plasminogen activators in stroke treatment: Fibrinolysis and beyond. Lancet Neurology, 17(12), 1121–1132. https://doi.org/10.1016/s1474-4422(18)30323-5
Article CAS PubMed Google Scholar
Wang, S. W., Liu, Z., & Shi, Z. S. (2018). Non-coding RNA in acute ischemic stroke: mechanisms, biomarkers and therapeutic targets. Cell Transplantation, 27(12), 1763–1777. https://doi.org/10.1177/0963689718806818
Article PubMed PubMed Central Google Scholar
Wang, X. Z., Li, S., Liu, Y., Cui, G. Y., & Yan, F. L. (2022). Construction of circRNA-Mediated Immune-Related ceRNA Network and Identification of Circulating circRNAs as Diagnostic Biomarkers in Acute Ischemic Stroke. Journal of Inflammation Research, 15, 4087–4104. https://doi.org/10.2147/jir.S368417
Article PubMed PubMed Central Google Scholar
Wang, X., Lu, Z., Gomez, A., Hon, G. C., Yue, Y., Han, D., et al. (2014). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 505(7481), 117–120. https://doi.org/10.1038/nature12730
Article CAS PubMed Google Scholar
Wu, F., Han, B., Wu, S., Yang, L., Leng, S., Li, M., et al. (2019). Circular RNA TLK1 aggravates neuronal injury and neurological deficits after ischemic stroke via miR-335-3p/TIPARP. Journal of Neuroscience, 39(37), 7369–7393. https://doi.org/10.1523/jneurosci.0299-19.2019
Article CAS PubMed Google Scholar
Xiang, Y., Zhang, Y., Xia, Y., Zhao, H., Liu, A., & Chen, Y. (2020). LncRNA MEG3 targeting miR-424-5p via MAPK signaling pathway mediates neuronal apoptosis in ischemic stroke. Aging (albany NY), 12(4), 3156–3174. https://doi.org/10.18632/aging.102790
Article CAS PubMed Google Scholar
Yang, H., Tu, Z., Yang, D., Hu, M., Zhou, L., Li, Q., et al. (2022). Exosomes from hypoxic pre-treated ADSCs attenuate acute ischemic stroke-induced brain injury via delivery of circ-Rps5 and promote M2 microglia/macrophage polarization. Neurosci Lett, 769, 136389, doi:https://doi.org/10.1016/j.neulet.2021.136389.
Yang, S. W., Cody, J. J., Rivera, A. A., Waehler, R., Wang, M., Kimball, K. J., et al. (2011). Conditionally replicating adenovirus expressing TIMP2 for ovarian cancer therapy. Clinical Cancer Research, 17(3), 538–549. https://doi.org/10.1158/1078-0432.Ccr-10-1628
Article CAS PubMed Google Scholar
You, H., Zhang, L., Chen, Z., Liu, W., Wang, H., & He, H. (2019). MiR-20b-5p relieves neuropathic pain by targeting Akt3 in a chronic constriction injury rat model. Synapse, 73(12), e22125, doi:https://doi.org/10.1002/syn.22125.
Yu, T. M., Palanisamy, K., Sun, K. T., Day, Y. J., Shu, K. H., Wang, I. K., et al. (2016). RANTES mediates kidney ischemia reperfusion injury through a possible role of HIF-1α and LncRNA PRINS. Science and Reports, 6, 18424. https://doi.org/10.1038/srep18424
Yuan, L., Chen, W., Xiang, J., Deng, Q., Hu, Y., & Li, J. (2022). Advances of circRNA-miRNA-mRNA regulatory network in cerebral ischemia/reperfusion injury. Exp Cell Res, 419(2), 113302, doi:https://doi.org/10.1016/j.yexcr.2022.113302.
Zhang, F., Ran, Y., Tahir, M., Li, Z., Wang, J., & Chen, X. (2022). Regulation of N6-methyladenosine (m6A) RNA methylation in microglia-mediated inflammation and ischemic stroke. Front Cell Neuroscience. https://doi.org/10.3389/fncel.2022.955222
Zheng, L., Tang, X., Lu, M., Sun, S., Xie, S., Cai, J., et al. (2020). microRNA-421–3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting m6A Reader YTHDF1 to inhibit p65 mRNA translation. International Immunopharmacology. https://doi.org/10.1016/j.intimp.2020.106937
Article PubMed PubMed Central Google Scholar
Zheng, Y., Li, L., Bi, X., & Xue, R. (2022). circPTP4A2-miR-330-5p-PDK2 Signaling Facilitates In Vivo Survival of HuMSCs on SF-SIS Scaffolds and Improves the Repair of Damaged Endometrium. Oxidative Medicine and Cellular Longevity, 2022, 2818433. https://doi.org/10.1155/2022/2818433
Comments (0)