Luining WI, Cysouw MC, Meijer D, Hendrikse NH, Boellaard R, Vis AN, Oprea-Lager DE. Targeting PSMA revolutionizes the role of nuclear medicine in diagnosis and treatment of prostate cancer. Cancers. 2022;14(5):1169.
Article CAS PubMed PubMed Central Google Scholar
Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3(1):81–5.
Heesch A, Maurer J, Stickeler E, Beheshti M, Mottaghy FM, Morgenroth A. Development of radiotracers for breast cancer—the tumor microenvironment as an emerging target. Cells. 2020;9(10):2334.
Article CAS PubMed PubMed Central Google Scholar
Sartor O, De Bono J, Chi KN, Fizazi K, Herrmann K, Rahbar K, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385(12):1091–103.
Article CAS PubMed PubMed Central Google Scholar
Kratochwil C, Bruchertseifer F, Rathke H, Bronzel M, Apostolidis C, Weichert W, Haberkorn U, Giesel FL, Morgenstern A. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med. 2017;58(10):1624–31.
Article CAS PubMed Google Scholar
Sgouros G, Roeske JC, McDevitt MR, Palm S, Allen BJ, Fisher DR, Brill AB, Song H, Howell RW, Akabani G. MIRD pamphlet no. 22 (abridged): radiobiology and dosimetry of α-particle emitters for targeted radionuclide therapy. J Nucl Med. 2010;51(2):311–28.
Article CAS PubMed Google Scholar
Feinendegen LE, McClure JJ. Alpha-emitters for medical therapy: workshop of the United States Department of Energy: Denver, Colorado, May 30–31, 1996. Radiat Res. 1997;148(2):195–201.
Hobbs RF, Howell RW, Song H, Baechler S, Sgouros G. Redefining relative biological effectiveness in the context of the EQDX formalism: implications for alpha-particle emitter therapy. Radiat Res. 2014;181(1):90–8.
Article CAS PubMed PubMed Central Google Scholar
Li WB, Hofmann W, Friedland W. Microdosimetry and nanodosimetry for internal emitters. Radiat Meas. 2018;1(115):29–42.
Friedland W, Dingfelder M, Kundrát P, Jacob P. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res Fund Mol Mech Mutagene. 2011;711(1–2):28–40.
Incerti S, Douglass M, Penfold S, Guatelli S, Bezak E. Review of Geant4-DNA applications for micro and nanoscale simulations. Physica Med. 2016;32(10):1187–200.
Salvat F. PENELOPE-2014: a code system for monte carlo simulation of electron and photon transport, report NEA/NSC/DOC(2015) 3. Barcelona: OECD Nuclear Energy Agency; 2015.
Li J, Li C, Qiu R, Yan C, Xie W, Wu Z, Zeng Z, Tung C. DNA strand breaks induced by electrons simulated with Nanodosimetry Monte Carlo Simulation Code: NASIC. Radiat Prot Dosimetry. 2015;166(1–4):38–43.
Article CAS PubMed Google Scholar
Perl J, Shin J, Schümann J, Faddegon B, Paganetti H. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 2012;39(11):6818–37.
Article CAS PubMed PubMed Central Google Scholar
Faddegon B, Ramos-Méndez J, Schuemann J, McNamara A, Shin J, Perl J, Paganetti H. The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Physica Med. 2020;1(72):114–21.
Agostinelli S, Allison J, Amako KA, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand GJ, Behner F. GEANT4—a simulation toolkit. Nucl Instrum Methods Phys Res, Sect A. 2003;506(3):250–303.
Allison J, Amako K, Apostolakis JE, Araujo HA, Dubois PA, Asai MA, Barrand GA, Capra RA, Chauvie SA, Chytracek RA, Cirrone GA. Geant4 developments and applications. IEEE Trans Nucl Sci. 2006;53(1):270–8.
Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand GJ, Beck BR. Recent developments in Geant4. Nucl Instrum Methods Phys Res, Sect A. 2016;1(835):186–225.
Paganetti H, Gottschalk B. Test of GEANT3 and GEANT4 nuclear models for 160 MeV protons stopping in. Med Phys. 2003;30(7):1926–31.
Article CAS PubMed Google Scholar
Jarlskog CZ, Paganetti H. Physics settings for using the Geant4 toolkit in proton therapy. IEEE Trans Nucl Sci. 2008;55(3):1018–25.
Paganetti H, Jiang H, Lee SY, Kooy HM. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility. Med Phys. 2004;31(7):2107–18.
Article CAS PubMed Google Scholar
Paganetti H, Jiang H, Parodi K, Slopsema R, Engelsman M. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy. Phys Med Biol. 2008;53(17):4825.
Clasie B, Wroe A, Kooy H, Depauw N, Flanz J, Paganetti H, Rosenfeld A. Assessment of out-of-field absorbed dose and equivalent dose in proton fields. Med Phys. 2010;37(1):311–21.
Article CAS PubMed Google Scholar
Gottschalk B, Platais R, Paganetti H. Nuclear interactions of 160 MeV protons stopping in copper: a test of Monte Carlo nuclear models. Med Phys. 1999;26(12):2597–601.
Article CAS PubMed Google Scholar
Paganetti H. Monte Carlo calculations for absolute dosimetry to determine machine outputs for proton therapy fields. Phys Med Biol. 2006;51(11):2801.
Article PubMed PubMed Central Google Scholar
Peterson SW, Polf J, Bues M, Ciangaru G, Archambault L, Beddar S, Smith A. Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons. Phys Med Biol. 2009;54(10):3217.
Article CAS PubMed Google Scholar
Schuemann J, McNamara AL, Ramos-Méndez J, Perl J, Held KD, Paganetti H, Incerti S, Faddegon B. TOPAS-nBio: an extension to the TOPAS simulation toolkit for cellular and sub-cellular radiobiology. Radiat Res. 2019;191(2):125–38.
Article CAS PubMed PubMed Central Google Scholar
Incerti S, Kyriakou I, Bernal MA, Bordage MC, Francis Z, Guatelli S, Ivanchenko V, Karamitros M, Lampe N, Lee SB, Meylan S. Geant4-DNA example applications for track structure simulations in liquid water: a report from the Geant4-DNA Project. Med Phys. 2018;45(8):e722–39.
Bernal MA, Bordage MC, Brown JM, Davídková M, Delage E, El Bitar Z, Enger SA, Francis Z, Guatelli S, Ivanchenko VN, Karamitros M. Track structure modeling in liquid water: a review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Physica Med. 2015;31(8):861–74.
Incerti S, Ivanchenko A, Karamitros M, Mantero A, Moretto P, Tran HN, Mascialino B, Champion C, Ivanchenko VN, Bernal MA, Francis Z. Comparison of GEANT4 very low energy cross section models with experimental data in water. Med Phys. 2010;37(9):4692–708.
Article CAS PubMed Google Scholar
Incerti S, Baldacchino G, Bernal M, Capra R, Champion C, Francis Z, Gueye P, Mantero A, Mascialino B, Moretto P, Nieminen P. The geant4-dna project. Int J Model Simul Sci Comput. 2010;1(02):157–78.
McNamara A, Geng C, Turner R, Mendez JR, Perl J, Held K, Faddegon B, Paganetti H, Schuemann J. Validation of the radiobiology toolkit TOPAS-nBio in simple DNA geometries. Physica Med. 2017;1(33):207–15.
Ramos-Méndez J, LaVerne JA, Domínguez-Kondo N, Milligan J, Štěpán V, Stefanová K, Perrot Y, Villagrasa C, Shin WG, Incerti S, McNamara A. TOPAS-nBio validation for simulating water radiolysis and DNA damage under low-LET irradiation. Phys Med Biol. 2021;66(17): 175026.
Derksen L, Pfuhl T, Engenhart-Cabillic R, Zink K, Baumann KS. Investigating the feasibility of TOPAS-nBio for Monte Carlo track structure simulations by adapting GEANT4-DNA examples application. Phys Med Biol. 2021;66(17): 175023.
Van Delinder KW, Khan R, Gräfe JL. Radiobiological impact of gadolinium neutron capture from proton therapy and alternative neutron sources using TOPAS-nBio. Med Phys. 2021;48(7):4004–16.
Zhu H, McNamara AL, McMahon SJ, Ramos-Mendez J, Henthorn NT, Faddegon B, Held KD, Perl J, Li J, Paganetti H, Schuemann J. Cellular response to proton irradiation: a simulation study with TOPAS-nBio. Radiat Res. 2020;194(1):9–21.
Article CAS PubMed PubMed Central Google Scholar
Klapproth AP, Schuemann J, Stangl S, Xie T, Li WB, Multhoff G. Multi-scale Monte Carlo simulations of gold nanoparticle-induced DNA damages for kilovoltage X-ray irradiation in a xenograft mouse model using TOPAS-nBio. Cancer Nanotechnol. 2021;12:1–8.
Ramos-Méndez J, García-García O, Domínguez-Kondo J, LaVerne JA, Schuemann J, Moreno-Barbosa E, Faddegon B. TOPAS-nBio simulation of temperature-dependent indirect DNA strand break yields. Phys Med Biol. 2022;67(14): 145007.
Comments (0)