Belvoncikova, P., Splichalova, P., Videnska, P. & Gardlik, R. The human mycobiome: colonization, composition and the role in health and disease. J. Fungi 8, 1046 (2022).
Ghannoum, M. A. et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 6, e1000713 (2010).
Article PubMed PubMed Central Google Scholar
Lopes, J. P. & Lionakis, M. S. Pathogenesis and virulence of Candida albicans. Virulence 13, 89–121 (2022).
Proctor, D. M., Drummond, R. A., Lionakis, M. S. & Segre, J. A. One population, multiple lifestyles: commensalism and pathogenesis in the human mycobiome. Cell Host Microbe 31, 539–553 (2023).
Miceli, M. H., Díaz, J. A. & Lee, S. A. Emerging opportunistic yeast infections. Lancet Infect. Dis. 11, 142–151 (2011).
Mahalingam, S. S., Jayaraman, S. & Pandiyan, P. Fungal colonization and infections—interactions with other human diseases. Pathogens 11, 212 (2022).
Article PubMed PubMed Central Google Scholar
Saftien, A., Puschhof, J. & Elinav, E. Fungi and cancer. Gut 72, 1410–1425 (2023).
Talapko, J. et al. Candida albicans—the virulence factors and clinical manifestations of infection. J. Fungi 7, 79 (2021).
Swidergall, M. & Filler, S. G. Oropharyngeal candidiasis: fungal invasion and epithelial cell responses. PLoS Pathog. 13, e1006056 (2017).
Article PubMed PubMed Central Google Scholar
Patel, M. Oral cavity and Candida albicans: colonisation to the development of infection. Pathogens 11, 335 (2022).
Article PubMed PubMed Central Google Scholar
Zhou, Y., Cheng, L., Lei, Y. L., Ren, B. & Zhou, X. The interactions between candida albicans and mucosal immunity. Front. Microbiol. 12, 652765 (2021).
Sultan, A. S., Theofilou, V. I., Alfaifi, A., Montelongo-Jauregui, D. & Jabra-Rizk, M.-A. Is Candida albicans an opportunistic oncogenic pathogen? PLoS Pathog. 18, e1010413 (2022).
Article PubMed PubMed Central Google Scholar
Dohlman, A. B. et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell 185, 3807–3822.e3812 (2022).
Chen, H., Zhou, X., Ren, B. & Cheng, L. The regulation of hyphae growth in Candida albicans. Virulence 11, 337–348 (2020).
Article PubMed PubMed Central Google Scholar
Sundstrom, P. Adhesins in Candida albicans. Curr. Opin. Microbiol. 2, 353–357 (1999).
Naglik, J. R., König, A., Hube, B. & Gaffen, S. L. Candida albicans–epithelial interactions and induction of mucosal innate immunity. Curr. Opin. Microbiol. 40, 104–112 (2017).
Article PubMed PubMed Central Google Scholar
Lachat, J. et al. Trans-cellular tunnels induced by the fungal pathogen Candida albicans facilitate invasion through successive epithelial cells without host damage. Nat. Commun. 13, 3781 (2022).
Article PubMed PubMed Central Google Scholar
Zhou, Y. et al. ERG3 and ERG11 genes are critical for the pathogenesis of Candida albicansduring the oral mucosal infection. Int. J. Oral. Sci. 10, 9 (2018).
Article PubMed PubMed Central Google Scholar
Moyes, D. L. et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64–68 (2016).
Article PubMed PubMed Central Google Scholar
Kasper, L. et al. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun. 9, 4260 (2018).
Article PubMed PubMed Central Google Scholar
Austermeier, S., Kasper, L., Westman, J. & Gresnigt, M. S. I want to break free – macrophage strategies to recognize and kill Candida albicans, and fungal counter-strategies to escape. Curr. Opin. Microbiol. 58, 15–23 (2020).
König, A., Hube, B. & Kasper, L. The dual function of the fungal toxin candidalysin during candida albicans—macrophage interaction and virulence. Toxins 12, 469 (2020).
Article PubMed PubMed Central Google Scholar
Köhler, J. R. & Fink, G. R. Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc. Natl. Acad. Sci. 93, 13223–13228 (1996).
Article PubMed PubMed Central Google Scholar
Davis, D. Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr. Genet. 44, 1–7 (2003).
Román, E., Correia, I., Prieto, D., Alonso, R. & Pla, J. The HOG MAPK pathway in Candida albicans: more than an osmosensing pathway. Int. Microbiol. 23, 23–29 (2020).
Liao, B. et al. The two-component signal transduction system and its regulation in Candida albicans. Virulence 12, 1884–1899 (2021).
Article PubMed PubMed Central Google Scholar
Liu, H. Transcriptional control of dimorphism in Candida albicans. Curr. Opin. Microbiol. 4, 728–735 (2001).
Davis‐Hanna, A., Piispanen, A. E., Stateva, L. I. & Hogan, D. A. Farnesol and dodecanol effects on the Candida albicans Ras1‐cAMP signalling pathway and the regulation of morphogenesis. Mol. Microbiol. 67, 47–62 (2008).
Article PubMed PubMed Central Google Scholar
Silao, F. G. S. et al. Mitochondrial proline catabolism activates Ras1/cAMP/PKA-induced filamentation in Candida albicans. PLOS Genet. 15, e1007976 (2019).
Article PubMed PubMed Central Google Scholar
Fang, H. M. & Wang, Y. RA domain‐mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development. Mol. Microbiol. 61, 484–496 (2006).
Feng, Q., Summers, E., Guo, B. & Fink, G. Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J. Bacteriol. 181, 6339–6346 (1999).
Article PubMed PubMed Central Google Scholar
Huang, G., Huang, Q., Wei, Y., Wang, Y. & Du, H. Multiple roles and diverse regulation of the Ras/cAMP/protein kinase a pathway in Candida albicans. Mol. Microbiol. 111, 6–16 (2019).
Xu, X.-L. et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4, 28–39 (2008).
Lin, C.-J., Wu, C.-Y., Yu, S.-J. & Chen, Y.-L. Protein kinase a governs growth and virulence in Candida tropicalis. Virulence 9, 331–347 (2018).
Article PubMed PubMed Central Google Scholar
Cloutier, M. et al. The two isoforms of the cAMP-dependent protein kinase catalytic subunit are involved in the control of dimorphism in the human fungal pathogen Candida albicans. Fungal Genet. Biol. 38, 133–141 (2003).
Huang, M. Y., Woolford, C. A., May, G., McManus, C. J. & Mitchell, A. P. Circuit diversification in a biofilm regulatory network. PLoS Pathog. 15, e1007787 (2019).
Article PubMed PubMed Central Google Scholar
Zeidler, U. et al. UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans. FEMS Yeast Res. 9, 126–142 (2009).
Cravener, M. V. et al. Reinforcement amid genetic diversity in the Candida albicans biofilm regulatory network. PLoS Pathog. 19, e1011109 (2023).
Article PubMed PubMed Central Google Scholar
Singh, A., Sharma, S. & Khuller, G. K. cAMP regulates vegetative growth and cell cycle in Candida albicans. Mol. Cell. Biochem. 304, 331–341 (2007).
Bai, C. et al. Characterization of a hyperactive Cyr1 mutant reveals new regulatory mechanisms for cellular cAMP levels in Candida albicans. Mol. Microbiol. 82, 879–893 (2011).
Bu, Q.-R., Bao, M.-Y., Yang, Y., Wang, T.-M. & Wang, C.-Z. Targeting virulence factors of Candida albicans with natural products. Foods 11, 2951 (2022).
Comments (0)