Azacitidine (Vidaza®) in Pediatric Patients with Relapsed Advanced MDS and JMML: Results of a Phase I/II Study by the ITCC Consortium and the EWOG-MDS Group (Study ITCC-015)

Hasle H. Myelodysplastic and myeloproliferative disorders of childhood. Hematol Am Soc Hematol Educ Program. 2016;2016(1):598–604. https://doi.org/10.1182/asheducation-2016.1.598.

Article  Google Scholar 

Niemeyer CM, Arico M, Basso G, et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood. 1997;89(10):3534–43.

CAS  PubMed  Google Scholar 

Chisholm KM. Juvenile myelomonocytic leukemia (JMML). Atlas Genet Cytogenet Oncol Haematol. 2020. https://doi.org/10.4267/2042/70699.

Article  Google Scholar 

Locatelli F, Zecca M, Pession A, et al. Myelodysplastic syndromes: the pediatric point of view. Haematologica. 1995;80(3):268–79.

CAS  PubMed  Google Scholar 

Pastor V, Hirabayashi S, Karow A, et al. Mutational landscape in children with myelodysplastic syndromes is distinct from adults: specific somatic drivers and novel germline variants. Leukemia. 2017;31(3):759–62. https://doi.org/10.1038/leu.2016.342.

Article  CAS  PubMed  Google Scholar 

Wlodarski MW, Hirabayashi S, Pastor V, et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood. 2016;127(11):1387–97. https://doi.org/10.1182/blood-2015-09-669937.

Article  CAS  PubMed  Google Scholar 

Locatelli F, Strahm B. How I treat myelodysplastic syndromes of childhood. Blood. 2018;131(13):1406–14. https://doi.org/10.1182/blood-2017-09-765214.

Article  CAS  PubMed  Google Scholar 

Locatelli F, Niemeyer CM. How I treat juvenile myelomonocytic leukemia. Blood. 2015;125(7):1083–90. https://doi.org/10.1182/blood-2014-08-550483.

Article  CAS  PubMed  Google Scholar 

Fenaux P, Mufti GJ, Santini V, et al. Azacitidine (AZA) treatment prolongs overall survival (OS) in higher-risk MDS patients compared with conventional care regimens (CCR): results of the AZA-001 Phase III Study. Blood. 2007;110(11):817. https://doi.org/10.1182/blood.v110.11.817.817.

Article  Google Scholar 

Kaminskas E, Farrell A, Abraham S, et al. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res. 2005;11(10):3604–8. https://doi.org/10.1158/1078-0432.CCR-04-2135.

Article  CAS  PubMed  Google Scholar 

EMA. Azacitidine Accord (azacitidine). Available from: https://www.ema.europa.eu/en/documents/overview/azacitidine-accord-epar-medicine-overview_en.pdf. Accessed 10 May 2023.

Gurion R, Vidal L, Gafter-Gvili A, et al. 5-Azacitidine prolongs overall survival in patients with myelodysplastic syndrome: a systematic review and meta-analysis. Haematologica. 2010;95(2):303–10. https://doi.org/10.3324/haematol.2009.010611.

Article  CAS  PubMed  Google Scholar 

Cseh AM, Niemeyer CM, Yoshimi A, et al. Therapy with low-dose azacitidine for MDS in children and young adults: a retrospective analysis of the EWOG-MDS Study Group. Br J Haematol. 2016;172(6):930–6. https://doi.org/10.1111/bjh.13915.

Article  CAS  PubMed  Google Scholar 

Niemeyer CM, Flotho C, Lipka DB, et al. Response to upfront azacitidine in juvenile myelomonocytic leukemia in the AZA-JMML-001 trial. Blood Adv. 2021;5(14):2901–8. https://doi.org/10.1182/bloodadvances.2020004144.

Article  CAS  PubMed  PubMed Central  Google Scholar 

US FDA. FDA approves azacitidine for newly diagnosed juvenile myelomonocytic leukemia. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-azacitidine-newly-diagnosed-juvenile-myelomonocytic-leukemia. Accessed 10 May 2023.

Strahm B, Nöllke P, Zecca M, et al. Hematopoietic stem cell transplantation for advanced myelodysplastic syndrome in children: results of the EWOG-MDS 98 study. Leukemia. 2011;25(3):455–62. https://doi.org/10.1038/leu.2010.297.

Article  CAS  PubMed  Google Scholar 

Locatelli F, Nöllke P, Zecca M, et al. Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS/EBMT trial. Blood. 2005;105(1):410–9. https://doi.org/10.1182/blood-2004-05-1944.

Article  CAS  PubMed  Google Scholar 

Hong S, Rybicki L, Corrigan D, et al. Survival following relapse after allogeneic hematopoietic cell transplantation for acute leukemia and myelodysplastic syndromes in the contemporary era. Hematol Oncol Stem Cell Ther. 2021;14(4):318–26. https://doi.org/10.1016/j.hemonc.2020.11.006.

Article  CAS  PubMed  Google Scholar 

Yoshimi A, Mohamed M, Bierings M, et al. Second allogeneic hematopoietic stem cell transplantation (HSCT) results in outcome similar to that of first HSCT for patients with juvenile myelomonocytic leukemia. Leukemia. 2007;21(3):556–60. https://doi.org/10.1038/sj.leu.2404537.

Article  CAS  PubMed  Google Scholar 

Chang YH, Jou ST, Lin DT, et al. Second allogeneic hematopoietic stem cell transplantation for juvenile myelomonocytic leukemia: case report and literature review. J Pediatr Hematol Oncol. 2004;26(3):190–3. https://doi.org/10.1097/00043426-200403000-00009.

Article  PubMed  Google Scholar 

Cheson BD, Bennett JM, Kantarjian H, et al. Report of an international working group to standardize response criteria for myelodysplastic syndromes. Blood. 2000;96(12):3671–4.

CAS  PubMed  Google Scholar 

Chan RJ, Cooper T, Kratz CP, et al. Juvenile myelomonocytic leukemia: a report from the 2nd International JMML Symposium. Leuk Res. 2009;33(3):355–62. https://doi.org/10.1016/j.leukres.2008.08.022.

Article  PubMed  Google Scholar 

Lipka DB, Witte T, Toth R, et al. RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nat Commun. 2017;8(1):2126. https://doi.org/10.1038/s41467-017-02177-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the Cancer and Leukemia Group B. J Clin Oncol. 2002;20(10):2429–40. https://doi.org/10.1200/JCO.2002.04.117.

Article  CAS  PubMed  Google Scholar 

Silverman LR, Holland JF, Weinberg RS, et al. Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia. 1993;7(Suppl. 1):21–9.

PubMed  Google Scholar 

Santini V. How I treat MDS after hypomethylating agent failure. Blood. 2019;133(6):521–9. https://doi.org/10.1182/blood-2018-03-785915.

Article  CAS  PubMed  Google Scholar 

Gilead. Gilead’s magrolimab, an investigational anti-CD47 monoclonal antibody, receives FDA breakthrough therapy designation for treatment of myelodysplastic syndrome. https://www.gilead.com/news-and-press/press-room/press-releases/2020/9/gileads-magrolimab-an-investigational-anticd47-monoclonal-antibody-receives-fda-breakthrough-therapy-designation-for-treatment-of-myelodysplastic. Accessed 10 May 2023.

Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138(2):286–99. https://doi.org/10.1016/j.cell.2009.05.045.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sallman DA, Al Malki MM, Asch AS, et al. Magrolimab in combination with azacitidine in patients with higher-risk myelodysplastic syndromes: final results of a phase Ib study. J Clin Oncol. 2023;41(15):2815–26. https://doi.org/10.1200/JCO.22.01794.

Article  CAS  PubMed  Google Scholar 

Garcia JS. Prospects for venetoclax in myelodysplastic syndromes. Hematol Oncol Clin North Am. 2020;34(2):441–8. https://doi.org/10.1016/j.hoc.2019.10.005.

Article  PubMed  Google Scholar 

Ball BJ, Famulare C, Stein EM, et al. Combined venetoclax and hypomethylating agent (HMA) therapy induces high response rates in patients with myelodysplastic syndrome including patients previously failing HMA. Blood. 2019;134(Suppl._1):4241. https://doi.org/10.1182/blood-2019-125113.

Article  Google Scholar 

Daver N, Senapati J, Maiti A, et al. Phase I/II study of azacitidine (AZA) with venetoclax (VEN) and magrolimab (Magro) in patients (pts) with newly diagnosed (ND) older/unfit or high-risk acute myeloid leukemia (AML) and relapsed/refractory (R/R) AML. Blood. 2022;140(Suppl. 1):141–4. https://doi.org/10.1182/BLOOD-2022-170188.

Article  Google Scholar 

Gupta A, Taslim C, Tullius BP, et al. Therapeutic modulation of the CD47-SIRPα axis in the pediatric tumor microenvironment: working up an appetite. Cancer Drug Resist. 2020;3(3):550–62. https://doi.org/10.20517/cdr.2020.12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winters AC, Maloney KW, Treece AL, et al. Single-center pediatric experience with venetoclax and azacitidine as treatment for myelodysplastic syndrome and acute myeloid leukemia. Pediatr Blood Cancer. 2020;67(10):e28398. https://doi.org/10.1002/pbc.28398.

Article  CAS  PubMed  Google Scholar 

Cseh A, Niemeyer CM, Yoshimi A, et al. Bridging to transplant with azacitidine in juvenile myelomonocytic leukemia: a retrospective analysis of the EWOG-MDS study group. Blood. 2015;125(14):2311–3. https://doi.org/10.1182/blood-2015-01-619734.

Article  PubMed  Google Scholar 

Niemeyer CM, Arico M, Basso G, European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS), et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. Blood. 1997;89(10):3534–43.

CAS  PubMed  Google Scholar 

Marcucci G, Silverman L, Eller M, et al. Bioavailability of azacitidine subcutaneous versus intravenous in patients with the myelodysplastic syndromes. J Clin Pharmacol. 2005;45(5):597–602. https://doi.org/10.1177/0091270004271947.

Article  CAS  PubMed 

Comments (0)

No login
gif