Sheep as a Large-Animal Model for Otology Research: Temporal Bone Extraction and Transmastoid Facial Recess Surgical Approach

Gurr A, Pearson MD, Dazert S (2011) Lambs’ temporal bone anatomy under didactic aspects. Braz J Otorhinolaryngol 77(1):51–57. https://doi.org/10.1590/s1808-86942011000100009

Article  PubMed  Google Scholar 

Soares HB, Lavinsky L (2011) Histology of sheep temporal bone. Braz J Otorhinolaryngol 77(3):285–292. https://doi.org/10.1590/s1808-86942011000300003

Article  PubMed  Google Scholar 

Seibel VA, Lavinsky L, De Oliveira JA (2006) Morphometric study of the external and middle ear anatomy in sheep: a possible model for ear experiments. Clin Anat 19(6):503–509. https://doi.org/10.1002/ca.20218

Article  PubMed  Google Scholar 

Seibel VA, Lavinsky L, Irion K (2006) CT-Scan sheep and human inner ear morphometric comparison. Braz J Otorhinolaryngol 72(3):370–376. https://doi.org/10.1016/s1808-8694(15)30971-x

Article  PubMed  Google Scholar 

Schnabl J, Glueckert R, Feuchtner G, Recheis W, Potrusil T, Kuhn V, Wolf-Magele A, Riechelmann H, Sprinzl GM (2012) Sheep as a large animal model for middle and inner ear implantable hearing devices: a feasibility study in cadavers. Otol Neurotol 33(3):481–489. https://doi.org/10.1097/MAO.0b013e318248ee3a

Article  PubMed  Google Scholar 

Han S, Suzuki-Kerr H, Suwantika M, Telang RS, Gerneke DA, Anekal PV, Bird P, Vlajkovic SM, Thorne PR (2021) Characterization of the sheep round window membrane. J Assoc Res Otolaryngol 22(1):1–17. https://doi.org/10.1007/s10162-020-00778-9

Article  PubMed  Google Scholar 

Kerneis S, Escoffre J-M, Galvin JJ, Bouakaz A, Presset A, Alix C, Oujagir E, Lefèvre A, Emond P, Blasco H, Bakhos D (2023) Sonoporation of the round window membrane on a sheep model: a safety study. Pharmaceutics 15(2). https://doi.org/10.3390/pharmaceutics15020442

Ames DR, Arehart LA (1972) Physiological response of lambs to auditory stimuli. J Anim Sci 34(6):994–998. https://doi.org/10.2527/jas1972.346994x

Article  CAS  PubMed  Google Scholar 

Peus D, Dobrev I, Prochazka L, Thoele K, Dalbert A, Boss A, Newcomb N, Probst R, Roosli C, Sim JH, Huber A, Pfiffner F (2017) Sheep as a large animal ear model: middle-ear ossicular velocities and intracochlear sound pressure. Hear Res 351:88–97. https://doi.org/10.1016/j.heares.2017.06.002

Article  PubMed  Google Scholar 

Peus D, Dobrev I, Pfiffner F, Sim JH (2020) Comparison of sheep and human middle-ear ossicles: anatomy and inertial properties. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 206(5):683–700. https://doi.org/10.1007/s00359-020-01430-w

Article  PubMed  PubMed Central  Google Scholar 

McFadden D, Pasanen EG, Valero MD, Roberts EK, Lee TM (2008) Dissociation between distortion-product and click-evoked otoacoustic emissions in sheep (Ovis aries). J Acoust Soc Am 124(6):3730–3738. https://doi.org/10.1121/1.2982402

Article  PubMed  PubMed Central  Google Scholar 

McFadden D, Pasanen EG, Valero MD, Roberts EK, Lee TM (2009) Effect of prenatal androgens on click-evoked otoacoustic emissions in male and female sheep (Ovis aries). Horm Behav 55(1):98–105. https://doi.org/10.1016/j.yhbeh.2008.08.013

Article  CAS  PubMed  Google Scholar 

Maia FC, Lavinsky L, Mollerke RO, Duarte ME, Pereira DP, Maia JE (2008) Distortion product otoacoustic emissions in sheep before and after hyperinsulinemia induction. Braz J Otorhinolaryngol 74(2):181–187. https://doi.org/10.1016/s1808-8694(15)31086-7

Article  PubMed  Google Scholar 

Zuma e Maia FC, Lavinsky L (2006) Distortion product otoacoustic emissions in an animal model of induced hyperinsulinemia. Int Tinnitus J 12(2):133–9

Angeli RD, Lavinsky L, Dolganov A (2009) Alterations in cochlear function during induced acute hyperinsulinemia in an animal model. Braz J Otorhinolaryngol 75(5):760–764. https://doi.org/10.1016/s1808-8694(15)30530-9

Article  PubMed  Google Scholar 

Boullaud L, Blasco H, Caillaud E, Emond P, Bakhos D (2022) Immediate-early modifications to the metabolomic profile of the perilymph following an acoustic trauma in a sheep model. J Clin Med 11(16). https://doi.org/10.3390/jcm11164668

Pohl F, Paasche G, Lenarz T, Schuon R (2017) Tympanometric measurements in conscious sheep - a diagnostic tool for pre-clinical middle ear implant studies. Int J Audiol 56(1):53–61. https://doi.org/10.1080/14992027.2016.1227480

Article  PubMed  Google Scholar 

Gocer C, Eryilmaz A, Genc U, Dagli M, Karabulut H, Iriz A (2007) An alternative model for stapedectomy training in residency program: sheep cadaver ear. Eur Arch Otorhinolaryngol 264(12):1409–1412. https://doi.org/10.1007/s00405-007-0437-3

Article  PubMed  Google Scholar 

Cordero A, del mar Medina M, Alonso A, Labatut T (2011) Stapedectomy in sheep: an animal model for surgical training. Otol Neurotol 32(5):742–7. https://doi.org/10.1097/MAO.0b013e31821ddbc2

Cordero A, Benitez S, Reyes P, Vaca M, Polo R, Perez C, Alonso A, Cobeta I (2015) Ovine ear model for fully endoscopic stapedectomy training. Eur Arch Otorhinolaryngol 272(9):2167–2174. https://doi.org/10.1007/s00405-014-3114-3

Article  CAS  PubMed  Google Scholar 

Anschuetz L, Bonali M, Ghirelli M, Mattioli F, Villari D, Caversaccio M, Presutti L (2017) An ovine model for exclusive endoscopic ear surgery. JAMA Otolaryngol Head Neck Surg 143(3):247–252. https://doi.org/10.1001/jamaoto.2016.3315

Article  PubMed  Google Scholar 

Beckmann S, Yacoub A, Fernandez IJ, Niederhauser L, Fermi M, Caversaccio M, Bonali M, Anschuetz L (2021) Exclusive endoscopic laser-stapedotomy: feasibility of an ovine training model. Otol Neurotol 42(7):994–1000. https://doi.org/10.1097/MAO.0000000000003168

Article  PubMed  Google Scholar 

Shrivastava T, Khan MM, Parab SR (2022) Learning Curve of Two Handed Endoscopic Ear Surgery on Sheep Temporal Bone: A Fellow’s Perspective. Indian J Otolaryngol Head Neck Surg 74(Suppl 1):550–558. https://doi.org/10.1007/s12070-021-02388-0

Article  PubMed  Google Scholar 

Okhovat S, Milner TD, Iyer A (2019) Feasibility of ovine and synthetic temporal bone models for simulation training in endoscopic ear surgery. J Laryngol Otol 133(11):966–973. https://doi.org/10.1017/S0022215119002135

Article  CAS  PubMed  Google Scholar 

Mantokoudis G, Huth ME, Weisstanner C, Friedrich HM, Nauer C, Candreia C, Caversaccio MD, Senn P (2016) Lamb temporal bone as a surgical training model of round window cochlear implant electrode insertion. Otol Neurotol 37(1):52–56. https://doi.org/10.1097/MAO.0000000000000921

Article  PubMed  Google Scholar 

Trinh TT, Cohen C, Boullaud L, Cottier JP, Bakhos D (2021) Sheep as a large animal model for cochlear implantation. Braz J Otorhinolaryngol. https://doi.org/10.1016/j.bjorl.2021.02.014

Article  PubMed  PubMed Central  Google Scholar 

Weisstanner C, Mantokoudis G, Huth M, Verma RK, Nauer C, Senn P, Caversaccio MD, Wagner F (2015) Radiation dose reduction in postoperative computed position control of cochlear implant electrodes in lambs - an experimental study. Int J Pediatr Otorhinolaryngol 79(12):2348–2354. https://doi.org/10.1016/j.ijporl.2015.10.040

Article  CAS  PubMed  Google Scholar 

Lavinsky L, Goycoolea M, Gananca MM, Zwetsch Y (1999) Surgical treatment of vertigo by utriculostomy: an experimental study in sheep. Acta Otolaryngol 119(5):522–527. https://doi.org/10.1080/00016489950180739

Article  CAS  PubMed  Google Scholar 

Neudert M, Beleites T, Ney M, Kluge A, Lasurashvili N, Bornitz M, Scharnweber D, Zahnert T (2010) Osseointegration of titanium prostheses on the stapes footplate. J Assoc Res Otolaryngol 11(2):161–171. https://doi.org/10.1007/s10162-009-0202-y

Article  PubMed  PubMed Central  Google Scholar 

Piu F, Wang X, Fernandez R, Dellamary L, Harrop A, Ye Q, Sweet J, Tapp R, Dolan DF, Altschuler RA, Lichter J, LeBel C (2011) OTO-104: a sustained-release dexamethasone hydrogel for the treatment of otic disorders. Otol Neurotol 32(1):171–179. https://doi.org/10.1097/MAO.0b013e3182009d29

Article  PubMed  Google Scholar 

Wang X, Fernandez R, Dellamary L, Harrop A, Ye Q, Lichter J, Lau D, Lebel C, Piu F (2011) Pharmacokinetics of dexamethasone solution following intratympanic injection in guinea pig and sheep. Audiol Neurootol 16(4):233–241. https://doi.org/10.1159/000320611

Article  CAS  PubMed  Google Scholar 

Larsson A, Andersson M, Wigren S, Pivodic A, Flynn M, Nannmark U (2015) Soft tissue integration of hydroxyapatite-coated abutments for bone conduction implants. Clin Implant Dent Relat Res 17(Suppl 2):e730–e735. https://doi.org/10.1111/cid.12304

Article  PubMed  Google Scholar 

Larsson A, Wigren S, Andersson M, Ekeroth G, Flynn M, Nannmark U (2012) Histologic evaluation of soft tissue integration of experimental abutments for bone anchored hearing implants using surgery without soft tissue reduction. Otol Neurotol 33(8):1445–1451. https://doi.org/10.1097/MAO.0b013e318268d4e0

Article  PubMed  Google Scholar 

Taghavi H, Hakansson B, Eeg-Olofsson M, Johansson CB, Tjellstrom A, Reinfeldt S, Bergqvist T, Olsson J (2013) A vibration investigation of a flat surface contact to skull bone for direct bone conduction transmission in sheep skulls in vivo. Otol Neurotol 34(4):690–698. https://doi.org/10.1097/MAO.0b013e3182877aee

Article  PubMed  Google Scholar 

Kaufmann CR, Tejani VD, Fredericks DC, Henslee AM, Sun DQ, Abbas PJ, Hansen MR (2020) Pilot evaluation of sheep as in vivo model for cochlear implantation. Otol Neurotol 41(5):596–604. https://doi.org/10.1097/MAO.0000000000002587

Article  PubMed  Google Scholar 

Anso J, Stahl C, Gerber N, Williamson T, Gavaghan K, Rosler KM, Caversaccio MD, Weber S, Bell B (2014) Feasibility of using EMG for early detection of the facial nerve during robotic direct cochlear access. Otol Neurotol 35(3):545–554. https://doi.org/10.1097/MAO.0000000000000187

Article  PubMed  Google Scholar 

Wyss Balmer T, Anso J, Muntane E, Gavaghan K, Weber S, Stahel A, Buchler P (2017) In-vivo electrical impedance measurement in mastoid bone. Ann Biomed Eng 45(4):1122–1132. https://doi.org/10.1007/s10439-016-1758-4

Article  PubMed 

Comments (0)

No login
gif