Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC, Nixon RA, Duchen MR, Mallucci GR, Kroemer G, Levine B, Eskelinen EL, Mochel F, Spedding M, Louis C, Martin OR, Millan MJ (2018) Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 17:660–688
Article CAS PubMed PubMed Central Google Scholar
Busche MA, Hyman BT (2020) Synergy between amyloid-beta and tau in Alzheimer’s disease. Nat Neurosci 23:1183–1193
Article CAS PubMed Google Scholar
Caballero B et al (2021) Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nat Commun 12:2238
Article CAS PubMed PubMed Central Google Scholar
Cai CZ, Zhuang XX, Zhu Q, Wu MY, Su H, Wang XJ, Iyaswamy A, Yue Z, Wang Q, Zhang B, Xue Y, Tan J, Li M, He H, Lu JH (2022) Enhancing autophagy maturation with CCZ1-MON1A complex alleviates neuropathology and memory defects in Alzheimer disease models. Theranostics 12:1738–1755
Article CAS PubMed PubMed Central Google Scholar
Chandra S, Jana M, Pahan K (2018) Aspirin Induces Lysosomal Biogenesis and Attenuates Amyloid Plaque Pathology in a Mouse Model of Alzheimer’s Disease via PPARalpha. J Neurosci 38:6682–6699
Article CAS PubMed PubMed Central Google Scholar
Chandra S, Roy A, Jana M, Pahan K (2019) Cinnamic acid activates PPARalpha to stimulate Lysosomal biogenesis and lower Amyloid plaque pathology in an Alzheimer’s disease mouse model. Neurobiol Dis 124:379–395
Article CAS PubMed Google Scholar
Chen F, Ghosh A, Lin J, Zhang C, Pan Y, Thakur A, Singh K, Hong H, Tang S (2020) 5-lipoxygenase pathway and its downstream cysteinyl leukotrienes as potential therapeutic targets for Alzheimer’s disease. Brain Behav Immun 88:844–855
Article CAS PubMed Google Scholar
d’Errico P, Meyer-Luehmann M (2020) Mechanisms of Pathogenic Tau and Abeta Protein Spreading in Alzheimer’s Disease. Front Aging Neurosci 12:265
Article CAS PubMed PubMed Central Google Scholar
Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM, Caponio D, Dan X, Rocktaschel P, Croteau DL, Akbari M, Greig NH, Fladby T, Nilsen H, Cader MZ, Mattson MP, Tavernarakis N, Bohr VA (2019) Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 22:401–412
Article CAS PubMed PubMed Central Google Scholar
Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R, Blennow K, Cummings J, van Duijn C, Nilsson PM, Dietrich PY, Scheltens P, Dubois B (2022) The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci 23:53–66
Article CAS PubMed Google Scholar
Gaurav I, Thakur A, Iyaswamy A, Wang X, Chen X, Yang Z (2021) Factors affecting extracellular vesicles based drug delivery systems. Molecules 26
Gaurav I, Thakur A, Kumar G, Long Q, Zhang K, Sidu RK, Thakur S, Sarkar RK, Kumar A, Iyaswamy A, Yang Z (2023) Delivery of apoplastic extracellular vesicles encapsulating green-synthesized silver nanoparticles to treat citrus canker. Nanomaterials (Basel) 13
Gherardelli C, Cisternas P, Inestrosa NC (2022) Lithium enhances hippocampal glucose metabolism in an in vitro mice model of alzheimer's disease. Int J Mol Sci 23
Hampel H, Lista S, Mango D, Nistico R, Perry G, Avila J, Hernandez F, Geerts H, Vergallo A, Alzheimer Precision Medicine I (2019) Lithium as a Treatment for Alzheimer’s Disease: The Systems Pharmacology Perspective. J Alzheimers Dis 69:615–629
Hong M, Chen DC, Klein PS, Lee VM (1997) Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 272:25326–25332
Article CAS PubMed Google Scholar
Iyaswamy A, Lu K, Guan XJ, Kan Y, Su C, Liu J, Jaganathan R, Vasudevan K, Paul J, Thakur A, Li M (2023) Impact and advances in the role of bacterial extracellular vesicles in neurodegenerative disease and its therapeutics. Biomedicines 11
Iyaswamy A, Krishnamoorthi SK, Zhang H, Sreenivasmurthy SG, Zhu Z, Liu J, Su CF, Guan XJ, Wang ZY, Cheung KH, Song JX, Durairajan SSK, Li M (2021) Qingyangshen mitigates amyloid-beta and Tau aggregate defects involving PPARalpha-TFEB activation in transgenic mice of Alzheimer’s disease. Phytomedicine 91:153648
Article CAS PubMed Google Scholar
Iyaswamy A, Krishnamoorthi SK, Song JX, Yang CB, Kaliyamoorthy V, Zhang H, Sreenivasmurthy SG, Malampati S, Wang ZY, Zhu Z, Tong BC, Cheung KH, Lu JH, Durairajan SSK, Li M (2020a) NeuroDefend, a novel Chinese medicine, attenuates amyloid-beta and tau pathology in experimental Alzheimer’s disease models. J Food Drug Anal 28:132–146
Article CAS PubMed Google Scholar
Iyaswamy A, Krishnamoorthi SK, Liu YW, Song JX, Kammala AK, Sreenivasmurthy SG, Malampati S, Tong BCK, Selvarasu K, Cheung KH, Lu JH, Tan JQ, Huang CY, Durairajan SSK, Li M (2020b) Yuan-Hu Zhi Tong Prescription Mitigates Tau Pathology and Alleviates Memory Deficiency in the Preclinical Models of Alzheimer’s Disease. Front Pharmacol 11:584770
Article CAS PubMed PubMed Central Google Scholar
Iyaswamy A, Wang X, Krishnamoorthi S, Kaliamoorthy V, Sreenivasmurthy SG, Kumar Durairajan SS, Song JX, Tong BC, Zhu Z, Su CF, Liu J, Cheung KH, Lu JH, Tan JQ, Li HW, Wong MS, Li M (2022) Theranostic F-SLOH mitigates Alzheimer’s disease pathology involving TFEB and ameliorates cognitive functions in Alzheimer’s disease models. Redox Biol 51:102280
Article CAS PubMed PubMed Central Google Scholar
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49:D1388–D1395
Article CAS PubMed Google Scholar
Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786
Article CAS PubMed Google Scholar
Luo R, Su LY, Li G, Yang J, Liu Q, Yang LX, Zhang DF, Zhou H, Xu M, Fan Y, Li J, Yao YG (2020) Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model. Autophagy 16:52–69
Article CAS PubMed Google Scholar
Ma XX, Wang D, Zhang YJ, Yang CR (2011) Identification of new qingyangshengenin and caudatin glycosides from the roots of Cynanchum otophyllum. Steroids 76:1003–1009
Article CAS PubMed Google Scholar
Maesako M, Houser MCQ, Turchyna Y, Wolfe MS, Berezovska O (2022) Presenilin/gamma-Secretase Activity Is Located in Acidic Compartments of Live Neurons. J Neurosci 42:145–154
Article CAS PubMed PubMed Central Google Scholar
McDade E, Llibre-Guerra JJ, Holtzman DM, Morris JC, Bateman RJ (2021) The informed road map to prevention of Alzheimer Disease: A call to arms. Mol Neurodegener 16:49
Article PubMed PubMed Central Google Scholar
McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, Brown J, Anderson-Jackson L, Williams L, Latore L, Thompson R, Alexander-Lindo R (2021) Cerebrospinal fluid biomarkers of alzheimer's disease: current evidence and future perspectives. Brain Sci 11
Munoz-Ruiz P, Rubio L, Garcia-Palomero E, Dorronsoro I, del Monte-Millan M, Valenzuela R, Usan P, de Austria C, Bartolini M, Andrisano V, Bidon-Chanal A, Orozco M, Luque FJ, Medina M, Martinez A (2005) Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: new disease-modifying agents for Alzheimer’s disease. J Med Chem 48:7223–7233
Article CAS PubMed Google Scholar
Nie D, Peng Y, Li M, Liu X, Zhu M, Ye L (2018) Lithium chloride (LiCl) induced autophagy and downregulated expression of transforming growth factor beta-induced protein (TGFBI) in granular corneal dystrophy. Exp Eye Res 173:44–50
Article CAS PubMed Google Scholar
Oyama T, Toyota K, Waku T, Hirakawa Y, Nagasawa N, Kasuga JI, Hashimoto Y, Miyachi H, Morikawa K (2009) Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures. Acta Crystallogr D Biol Crystallogr 65:786–795
Article CAS PubMed PubMed Central Google Scholar
Parums DV (2021) Editorial: Targets for Disease-Modifying Therapies in Alzheimer’s Disease, Including Amyloid beta and Tau Protein. Med Sci Monit 27:e934077
PubMed PubMed Central Google Scholar
Patel D, Roy A, Pahan K (2020) PPARalpha serves as a new receptor of aspirin for neuroprotection. J Neurosci Res 98:626–631
Article CAS PubMed Google Scholar
Patel D, Roy A, Kundu M, Jana M, Luan CH, Gonzalez FJ, Pahan K (2018) Aspirin binds to PPARalpha to stimulate hippocampal plasticity and protect memory. Proc Natl Acad Sci U S A 115:E7408–E7417
Article CAS PubMed PubMed Central Google Scholar
Peng Y, Ding Y (2015) Pharmacokinetics and tissue distribution study of caudatin in normal and diethylnitrosamine-induced hepatocellular carcinoma model rats. Molecules 20:4225–4237
Article CAS PubMed PubMed Central Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612
Article CAS PubMed Google Scholar
Qian X, Li B, Li P, Wang D, Dai W, Zhang M (2017) C21 steroidal glycosides from Cynanchum auriculatum and their neuroprotective effects against H2O2-induced damage in PC12 cells. Phytochemistry 140:1–15
Article CAS PubMed Google Scholar
Qu XX, He JH, Cui ZQ, Yang T, Sun XH (2022) PPAR-alpha Agonist GW7647 Protects Against Oxidative Stress and Iron Deposit via GPx4 in a Transgenic Mouse Model of Alzheimer’s Diseases. ACS Chem Neurosci 13:207–216
Comments (0)