Bukowski, K., M. Kciuk, and R. Kontek, Mechanisms of multidrug resistance in cancer chemotherapy. International journal of molecular sciences, 2020. 21(9): p. 3233.
Sunjuk, M., et al., Transition Metal Complexes of Schiff Base Ligands Prepared from Reaction of Aminobenzothiazole with Benzaldehydes. Inorganics, 2022. 10(4): p. 43.
Mansoori, B., et al., The different mechanisms of cancer drug resistance: a brief review. Advanced pharmaceutical bulletin, 2017. 7(3): p. 339.
Dallavalle, S., et al., Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resistance Updates, 2020. 50: p. 100682.
Butturini, E., et al., Tumor dormancy and interplay with hypoxic tumor microenvironment. International journal of molecular sciences, 2019. 20(17): p. 4305.
Mussi, S., et al., Antiproliferative effects of sulphonamide carbonic anhydrase inhibitors C18, SLC-0111 and acetazolamide on bladder, glioblastoma and pancreatic cancer cell lines. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022. 37(1): p. 280-286.
Supuran, C.T., Structure and function of carbonic anhydrases. Biochemical Journal, 2016. 473(14): p. 2023-2032.
Angeli, A., et al., Pyrazolo [4, 3-c] pyridine Sulfonamides as Carbonic Anhydrase Inhibitors: Synthesis, Biological and In Silico Studies. Pharmaceuticals, 2022. 15(3): p. 316.
Khushal, A., et al., Synthesis, carbonic anhydrase II/IX/XII inhibition, DFT, and molecular docking studies of hydrazide-sulfonamide hybrids of 4-methylsalicyl-and acyl-substituted hydrazide. BioMed Research International, 2022. 2022.
Supuran, C.T., et al., Carbonic anhydrase inhibitors: sulfonamides as antitumor agents? Bioorganic & medicinal chemistry, 2001. 9(3): p. 703-714.
Supuran, C.T., Experimental carbonic anhydrase inhibitors for the treatment of hypoxic tumors. Journal of Experimental Pharmacology, 2020: p. 603-617.
Angeli, A., et al., Carbonic anhydrase inhibitors targeting metabolism and tumor microenvironment. Metabolites, 2020. 10(10): p. 412.
Said, M.A., et al., Sulfonamide-based ring-fused analogues for CAN508 as novel carbonic anhydrase inhibitors endowed with antitumor activity: Design, synthesis, and in vitro biological evaluation. European Journal of Medicinal Chemistry, 2020. 189: p. 112019.
Borcea, A.-M., et al., An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives. Molecules, 2021. 26(3): p. 624.
Sharma, P.C., et al., Thiazole-containing compounds as therapeutic targets for cancer therapy. European journal of medicinal chemistry, 2020. 188: p. 112016.
Ramos-Inza, S., et al., Thiazole moiety: An interesting scaffold for developing new antitumoral compounds, in Heterocycles-synthesis and biological activities. 2019, IntechOpen.
Arshad, M.F., et al., Thiazole: A versatile standalone moiety contributing to the development of various drugs and biologically active agents. Molecules, 2022. 27(13): p. 3994.
Supuran, C.T., A. Scozzafava, and A. Casini, Carbonic anhydrase inhibitors. Medicinal research reviews, 2003. 23(2): p. 146-189.
Billah, M.M., et al., Determination of the presence and pharmacokinetic profile of ciprofloxacin by TLC and HPLC method respectively in broiler chicken after single oral administration. The Journal of Antibiotics, 2014. 67(11): p. 745-748.
Saeedi, M., et al., Synthesis and biological investigation of some novel sulfonamide and amide derivatives containing coumarin moieties. Iranian Journal of Pharmaceutical Research: IJPR, 2014. 13(3): p. 881.
Jawad, H.A., et al., Design, Synthesis, In Silico Study And Preliminary Pharmacological Assessment Of New Ciprofloxacin Analogues Having Thiazole Nucleus. Journal of Pharmaceutical Negative Results, 2023: p. 91-104.
Park, H.-S., et al., Synthesis and characterization of novel hydantoins as potential COX-2 inhibitors: 1, 5-Diarylhydantoins. Bulletin of the Korean Chemical Society, 2007. 28(5): p. 751-757.
Comments (0)