Improved Exopolysaccharide Production from Lacticaseibacillus Paracasei SH6 Using Mutagen EMS

Quinto E.J., Jiménez P., Caro I., Tejero J., Mateo J. and Girbés T. (2014). Probiotic Lactic Acid Bacteria: a review. Food Nutr. Sci., 5(18):1765. https://doi.org/10.4236/fns.2014.518190

Oleksy-Sobczak M. and Klewicka E. (2020). Optimization of Media Composition to Maximize the Yield of Exopolysaccharides Production by Lactobacillus rhamnosus Strains. Prob. Antimicrob. Proteins, 12:774-83. https://doi.org/10.1007/s12602-019-09581-2

Widyastuti Y. Rohmatussolihat, and Febrisiantosa A. (2014). The Role of Lactic Acid Bacteria in Milk Fermentation. Food Nutr. Sci., 5(4):435-442. https://doi.org/10.4236/fns.2014.54051

Mohd Nadzir M., Nurhayati R.W., Idris F.N. and Nguyen M.H. (2021). Biomedical Applications of Bacterial Exopolysaccharides: A Review. Polymers, 13(4):530. https://doi.org/10.3390/polym13040530

Donot F., Fontana A., Baccou J.C. and Schorr-Galindo S. (2012). Microbial exopolysaccharides: Main examples of Synthesis, Excretion, Genetics and Extraction. Carbohydr. Polym., 87(2):951-962. https://doi.org/10.1016/j.carbpol.2011.08.083

Flemming H.C. (2016). EPS-Then and Now. Microorganisms, 4(4):41-52. https://doi.org/10.3390/microorganisms4040041

Leja K., Myszka K. and Czaczyk K. (2011). Genome shuffling: a method to improve biotechnological processes. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology, 92(4):345-351. https://doi.org/10.5114/bta.2011.46551

Asgher M., Urooj Y., Qamar S.A. and Khalid N. (2020). Improved exopolysaccharide production from Bacillus licheniformis MS3: Optimization and structural/functional characterization. International journal of biological macromolecules, 151:984-992. https://doi.org/10.1016/j.ijbiomac.2019.11.094

Kothari V., Mishra T. and Kushwah P. (2014). Mutagenic effect of microwave radiation on exopolysaccharide production in Xanthomonas campestris. Curr. Trends Biotechnol. Pharm., 8(1): 29-37. ISSN 0973-8916 (Print), 2230-7303 (Online).

Khattab A.A. (2002). Molecular and Biochemical Studies of Genetically Constructed Lactic Acid Bacteria, PhD dissertation, Tanta University (Egypt).

Khattab A.A., Ibrahim M.I.M. and El-Kady A.A. ( 2018). Ochratoxin A biosorption onto genetically improved of Lactobacillus delbrueckii mutants. Int. Food Res J., 25(2):515-522. ISSN 1985-4668

Hwang C.F., Chang J.H., Houng J.Y., Tsai C.C., Lin C.K. and Tsen H.Y. (2012). Optimization of medium composition for improving biomass production of Lactobacillus plantarum Pi06 using the Taguchi array design and the Box-Behnken method. Biotechnol. Bioprocess Eng., 17:827-834. https://doi.org/10.1007/s12257-012-0007-4

Martini C., Verruma-Bernardi M.R., Borges M.T.M.R., Margarido L.A.C. and Ceccato-Antonini, S.R. (2011). Yeast composition of sugar cane juice in relation to plant varieties and seasonality. Biosci. j., 27(5): 710- 717.

Manochai P., Phimolsiripol Y. and Seesuriyachan P. (2014). Response Surface Optimization of Exopolysaccharide Production from Sugarcane Juice by Lactobacillus confusus TISTR 1498. Chiang Mai Univ. J. Nat. Sci, 13(1):425-438. https://doi.org/10.12982/cmujns.2014.0046

Allaith S.A., Abdel-aziz M.E., Thabit Z.A., Altemimi A.B., Abd El-Ghany K., Giuffrè A.M., Al-Manhel A.J.A., Ebrahim H.S., Mohamed R.M. and Abedelmaksoud T.G. (2022). Screening and molecular identification of lactic acid bacteria producing β-glucan in boza and cider. Fermentation, 8(8):350. https://doi.org/10.3390/fermentation8080350

Ale E.C., Batistela V.A., Correa Olivar G., Ferrado J.B., Sadiq S., Ahmed H.I., Reinheimer J.A., Vera‐Candioti L., Laws A.P. and Binetti A.G. (2020). Statistical optimisation of the exopolysaccharide production by Lactobacillus fermentum Lf2 and analysis of its chemical composition. Int. J. Dairy Technol., 73(1):76-87. https://doi.org/10.1111/1471-0307.12639

Othman N.Z., Din A.R.J.M., Azam Z.M., Rosli M.A. and Sarmidi M.R. (2018). Statistical Optimization of Medium Compositions for High Cell Mass and Exopolysaccharide Production by Lactobacillus plantarum ATCC 8014. Appl. Food Biotechnol., 5(2):87-96. https://doi.org/10.22037/afb.v5i2.19299

Gerhardt P., Murray R.G.E., Wood W.A., Krieg N. R. (1994). Methods for general and molecular bacteriology. ASM (Washington DC). ISBN 1-5558-048-9, p 518

Kim D.H., Chon J.W., Kim H., Kim H.S., Choi D., Hwang D.G. and Seo K.H. (2015). Detection and Enumeration of Lactic Acid Bacteria, Acetic Acid Bacteria and Yeast in Kefir Grain and Milk Using Quantitative Real‐Time PCR. J. Food Saf., 35(1):102-107. https://doi.org/10.1111/jfs.12153

Turpin W., Humblot C., Guyot J.P. (2011). Genetic screening of functional properties of lactic acid bacteria in a fermented pearl millet slurry and in the metagenome of fermented starchy foods. Appl. Environ. Microbiol., 77(24): 8722–8734. https://doi.org/10.1128/AEM.05988-11

Yuan J.S., Reed A., Chen F. and Stewart C.N. (2006). Statistical analysis of real-time PCR data. BMC bioinformatics, 7(85): 1-12. https://doi.org/10.1186/1471-2105-7-85

Freese E.B. (1961). Transitions and transversions induced by depurinating agents. National Academy of Sciences, 47(4):540-545. https://doi.org/10.1073/pnas.47.4.540

Radwan A.A., Darwesh O.M., Mohamed K.A., Shady H.M.A., and Emam, M.T. (2023). Screening, Genetic Improvement, and Production Optimization of TA-Protease for Biofilm Removal of Dairy Sporeformers. Middle East J. Agric. Res., 12(4): 587-608. https://doi.org/10.36632/mejar/2023.12.4.38

Bazaraa W.A., Abd El-Hafez A.E.N. and Ibrahim E.M. (2021). Mutagenesis and protoplast fusion for enhanced bacteriocins production. Applied Food Biotechnology, 8(2):133-142. https://doi.org/10.22037/afb.v8i2.32505

Badel S., Bernardi T. and Michaud P. (2011). New perspectives for Lactobacilli exopolysaccharides. Biotechnology advances, 29(1): 54-66. https://doi.org/10.1016/j.biotechadv.2010.08.011

Xu R., Ma S., Wang Y., Liu L. and Li P. (2010). Screening, identification and statistic optimization of a novel exopolysaccharide producing Lactobacillus paracasei HCT. Afr. J. Microbiol. Res., 4(9), pp.783-795. ISSN 1996-0808

Yilmaz M.T., İspirli H., Taylan O., Bilgrami A.L. and Dertli E. (2022). Structural and bioactive characteristics of a dextran produced by Lactobacillus kunkeei AK1. International Journal of Biological Macromolecules, 200, 293-302. https://doi.org/10.1016/j.ijbiomac.2022.01.012

İspirli H. (2023). Physicochemical Characterization of Dextran HE29 Produced by the Leuconostoc citreum HE29 Isolated from Traditional Fermented Pickle. Molecules, 28(20):7149. https://doi.org/10.3390/molecules28207149

Sharma K., Sharma N., Handa S. and Pathania S. (2020). Purification and characterization of novel exopolysaccharides produced from Lactobacillus paraplantarum KM1 isolated from human milk and its cytotoxicity. J. Genet. Eng. Biotechnol., 18(56):1-10. https://doi.org/10.1186/s43141-020-00063-5

Abd El-Ghany K., Hamouda R.A., Mahrous H., Elhafez E.A., Ahmed F.A.H. and Hamza H.A., 2016. Description of isolated LAB producing β-glucan from Egyptian sources and evaluation of its therapeutic effect. Int. J. Pharm., 12 (8): 801-811. https://doi.org/10.3923/ijp.2016.801.811

Kralj S., van Geel-Schutten G.H., Dondorff M.M.G., Kirsanovs S., Van Der Maarel M.J.E.C. and Dijkhuizen L. (2004). Glucan synthesis in the genus Lactobacillus: isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Microbiology, 150(11):3681-3690. https://doi.org/10.1099/mic.0.27321-0

Cerning, J., 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev., 7(1-2):113-130. https://doi.org/10.1111/j.1574-6968.1990.tb04883.x

Zhao Z., Wu J., Sun Z., Fan J., Liu F., Zhao W., Liu W.H., Zhang M. and Hung W.L. (2023). Postbiotics Derived from L. paracasei ET-22 Inhibit the Formation of S. mutans Biofilms and Bioactive Substances: An Analysis. Molecules, 28(3): 1236. https://doi.org/10.3390/molecules28031236

Wasfi R., Abd El‐Rahman O.A., Zafer M.M. and Ashour H.M. (2018). Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries‐inducing Streptococcus mutans. J. Cell. Mol. Med., 22(3):1972-1983. https://doi.org/10.1111/jcmm.13496

Singh B. and Sharma S. (2022). Vitamin B12 Production by Lactobacillus Species Isolated from Milk Products. Journal for Research in Applied Sciences and Biotechnology, 1(2):48-59. https://doi.org/10.55544/jrasb.1.2.6

Khattab A.E.N., Darwish A.M., Othman S.I., Allam A.A. and Alqhtani H.A. (2023). Anti-Inflammatory and Immunomodulatory Potency of Selenium-Enriched Probiotic Mutants in Mice with Induced Ulcerative Colitis. Biological Trace Element Research, 201(1):353-67. https://doi.org/10.1007/s12011-022-03154-1

Jung J.Y., Kwon D.H. Lee Y.J., Song Y.K., Chang M.S. and Ha S.J. (2023). The Mutant Lactobacillus plantarum GNS300 Showed Improved Exopolysaccharide Production and Antioxidant Activity. Microbiol. Biotechnol. Lett., 51(1), 18–25. https://doi.org/10.48022/mbl.2211.11006.

Mukherjee P., Pal S. and Sivaprakasam S. (2024). Optimization of D-lactic acid biosynthesis from diverse carbon sources in mutant Lactobacillus delbrueckii subsp. bulgaricus via random mutagenesis. Systems Microbiology and Biomanufacturing, 11:1-20. https://doi.org/10.1007/s43393-024-00316-1

Comments (0)

No login
gif