MiR-224-5p inhibits osteoblast differentiation and impairs bone formation by targeting Runx2 and Sp7

Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. https://doi.org/10.1038/nature02871

Article  CAS  PubMed  Google Scholar 

Armas LA, Recker RR (2012) Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am 41:475–486. https://doi.org/10.1016/j.ecl.2012.04.006

Article  CAS  PubMed  Google Scholar 

Baek WY, De Crombrugghe B, Kim JE (2010) Postnatally induced inactivation of Osterix in osteoblasts results in the reduction of bone formation and maintenance. Bone 46:920–928. https://doi.org/10.1016/j.bone.2009.12.007

Article  CAS  PubMed  Google Scholar 

Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. https://doi.org/10.1016/j.cell.2009.01.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boskey AL, Coleman R (2010) Aging and bone. J Dent Res 89:1333–1348. https://doi.org/10.1177/0022034510377791

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao Y, Jiang C, Wang X, Wang H, Yan Z, Yuan H (2021) Reciprocal effect of microRNA-224 on osteogenesis and adipogenesis in steroid-induced osteonecrosis of the femoral head. Bone 145:115844. https://doi.org/10.1016/j.bone.2021.115844

Article  CAS  PubMed  Google Scholar 

Catalanotto C, Cogoni C, Zardo G (2016) MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 17:1712. https://doi.org/10.3390/ijms17101712

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin CS, Lecanda F, Sheikh S, Weitzmann L, Cheng SL, Civitelli R (2000) Relative abundance of different cadherins defines differentiation of mesenchymal precursors into osteogenic, myogenic, or adipogenic pathways. J Cell Biochem 78:566–577

Article  CAS  PubMed  Google Scholar 

Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86. https://doi.org/10.1126/science.1091903

Article  CAS  PubMed  Google Scholar 

Cheng F, Yang MM, Yang RH (2019) MiRNA-365a-3p promotes the progression of osteoporosis by inhibiting osteogenic differentiation via targeting RUNX2. Eur Rev Med Pharmacol Sci 23:7766–7774. https://doi.org/10.26355/eurrev_201909_18986

Article  CAS  PubMed  Google Scholar 

Ell B, Kang Y (2014) MicroRNAs as regulators of bone homeostasis and bone metastasis. Bonekey Rep 3:549. https://doi.org/10.1038/bonekey.2014.44

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. https://doi.org/10.1146/annurev-biochem-060308-103103

Article  CAS  PubMed  Google Scholar 

Fang T, Wu Q, Zhou L, Mu S, Fu Q (2016) miR-106b-5p and mir-17-5p suppress osteogenic differentiation by targeting Smad5 and inhibit bone formation. Exp Cell Res 347:74–82. https://doi.org/10.1016/j.yexcr.2016.07.010

Article  CAS  PubMed  Google Scholar 

Feng X, Mcdonald JM (2011) Disorders of bone remodeling. Annu Rev Pathol 6:121–145. https://doi.org/10.1146/annurev-pathol-011110-130203

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferbebouh M, Vallieres F, Benderdour M, Fernandes J (2021) The pathophysiology of immunoporosis: innovative therapeutic targets. Inflamm Res 70:859–875. https://doi.org/10.1007/s00011-021-01484-9

Article  CAS  PubMed  Google Scholar 

Gao X, Sun X, Cheng H, Ruzbarsky JJ, Mullen M, Huard M, Huard J (2023) MRL/MpJ mice resist to age-related and long-term ovariectomy-induced bone loss: implications for bone regeneration and repair. Int J Mol Sci 24:2396. https://doi.org/10.3390/ijms24032396

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hensley AP, Mcalinden A (2021) The role of microRNAs in bone development. Bone 143:115760. https://doi.org/10.1016/j.bone.2020.115760

Article  CAS  PubMed  Google Scholar 

Huang M, Li X, Zhou C, Si M, Zheng H, Chen L, Ding H (2020) Noncoding RNA mir-205-5p mediates osteoporosis pathogenesis and osteoblast differentiation by regulating RUNX2. J Cell Biochem 121:4196–4203. https://doi.org/10.1002/jcb.29599

Article  CAS  PubMed  Google Scholar 

Iaquinta MR, Lanzillotti C, Mazziotta C, Bononi I, Frontini F, Mazzoni E, Oton-Gonzalez L, Rotondo JC, Torreggiani E, Tognon M et al (2021) The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics 11:6573–6591. https://doi.org/10.7150/thno.55664

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalu DN, Liu CC, Hardin RR, Hollis BW (1989) The aged rat model of ovarian hormone deficiency bone loss. Endocrinology 124:7–16. https://doi.org/10.1210/endo-124-1-7

Article  CAS  PubMed  Google Scholar 

Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406. https://doi.org/10.1016/s1534-5807(02)00157-0

Article  CAS  PubMed  Google Scholar 

Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127:1755–1766. https://doi.org/10.1083/jcb.127.6.1755

Article  CAS  PubMed  Google Scholar 

Komori T (2018) Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol 149:313–323. https://doi.org/10.1007/s00418-018-1640-6

Article  CAS  PubMed  Google Scholar 

Lane NE (2006) Epidemiology, etiology and diagnosis of osteoporosis. Am J Obstet Gynecol 194:S3–S11

Article  CAS  PubMed  Google Scholar 

Lane JM, Russell L, Khan SN (2000) Osteoporosis. Clin Orthop Relat Res https://doi.org/10.1097/00003086-200003000-00016

Article  PubMed  Google Scholar 

Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798. https://doi.org/10.1016/s0092-8674(03)01018-3

Article  CAS  PubMed  Google Scholar 

Liu TM, Lee EH (2013) Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Eng Part B Rev 19:254–263. https://doi.org/10.1089/ten.TEB.2012.0527

Article  PubMed  Google Scholar 

Lui JC, Raimann A, Hojo H, Dong L, Roschger P, Kikani B, Wintergerst U, Fratzl-Zelman N, Jee YH, Haeusler G et al (2022) A neomorphic variant in SP7 alters sequence specificity and causes a high-turnover bone disorder. Nat Commun 13:700. https://doi.org/10.1038/s41467-022-28318-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marie PJ (2008) Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 473:98–105. https://doi.org/10.1016/j.abb.2008.02.030

Article  CAS  PubMed  Google Scholar 

Min Z, Xiaomeng L, Zheng L, Yangge D, Xuejiao L, Longwei L, Xiao Z, Yunsong L, Ping Z, Yongsheng Z (2019) Asymmetrical methyltransferase PRMT3 regulates human mesenchymal stem cell osteogenesis via miR-3648. Cell Death Dis 10:581. https://doi.org/10.1038/s41419-019-1815-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, De Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29. https://doi.org/10.1016/s0092-8674(01)00622-5

Article  CAS  PubMed  Google Scholar 

Peng Y, Xiang H, Chen C, Zheng R, Chai J, Peng J, Jiang S (2013a) MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. Int J Biochem Cell Biol 45:1585–1593. https://doi.org/10.1016/j.biocel.2013.04.029

Article  CAS  PubMed  Google Scholar 

Peng Y, Shi K, Wang L, Lu J, Li H, Pan S, Ma C (2013b) Characterization of Osterix protein stability and physiological role in osteoblast differentiation. PLoS ONE 8:e56451. https://doi.org/10.1371/journal.pone.0056451

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif