Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. https://doi.org/10.1038/nature02871
Article CAS PubMed Google Scholar
Armas LA, Recker RR (2012) Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am 41:475–486. https://doi.org/10.1016/j.ecl.2012.04.006
Article CAS PubMed Google Scholar
Baek WY, De Crombrugghe B, Kim JE (2010) Postnatally induced inactivation of Osterix in osteoblasts results in the reduction of bone formation and maintenance. Bone 46:920–928. https://doi.org/10.1016/j.bone.2009.12.007
Article CAS PubMed Google Scholar
Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. https://doi.org/10.1016/j.cell.2009.01.002
Article CAS PubMed PubMed Central Google Scholar
Boskey AL, Coleman R (2010) Aging and bone. J Dent Res 89:1333–1348. https://doi.org/10.1177/0022034510377791
Article CAS PubMed PubMed Central Google Scholar
Cao Y, Jiang C, Wang X, Wang H, Yan Z, Yuan H (2021) Reciprocal effect of microRNA-224 on osteogenesis and adipogenesis in steroid-induced osteonecrosis of the femoral head. Bone 145:115844. https://doi.org/10.1016/j.bone.2021.115844
Article CAS PubMed Google Scholar
Catalanotto C, Cogoni C, Zardo G (2016) MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 17:1712. https://doi.org/10.3390/ijms17101712
Article CAS PubMed PubMed Central Google Scholar
Shin CS, Lecanda F, Sheikh S, Weitzmann L, Cheng SL, Civitelli R (2000) Relative abundance of different cadherins defines differentiation of mesenchymal precursors into osteogenic, myogenic, or adipogenic pathways. J Cell Biochem 78:566–577
Article CAS PubMed Google Scholar
Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86. https://doi.org/10.1126/science.1091903
Article CAS PubMed Google Scholar
Cheng F, Yang MM, Yang RH (2019) MiRNA-365a-3p promotes the progression of osteoporosis by inhibiting osteogenic differentiation via targeting RUNX2. Eur Rev Med Pharmacol Sci 23:7766–7774. https://doi.org/10.26355/eurrev_201909_18986
Article CAS PubMed Google Scholar
Ell B, Kang Y (2014) MicroRNAs as regulators of bone homeostasis and bone metastasis. Bonekey Rep 3:549. https://doi.org/10.1038/bonekey.2014.44
Article CAS PubMed PubMed Central Google Scholar
Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. https://doi.org/10.1146/annurev-biochem-060308-103103
Article CAS PubMed Google Scholar
Fang T, Wu Q, Zhou L, Mu S, Fu Q (2016) miR-106b-5p and mir-17-5p suppress osteogenic differentiation by targeting Smad5 and inhibit bone formation. Exp Cell Res 347:74–82. https://doi.org/10.1016/j.yexcr.2016.07.010
Article CAS PubMed Google Scholar
Feng X, Mcdonald JM (2011) Disorders of bone remodeling. Annu Rev Pathol 6:121–145. https://doi.org/10.1146/annurev-pathol-011110-130203
Article CAS PubMed PubMed Central Google Scholar
Ferbebouh M, Vallieres F, Benderdour M, Fernandes J (2021) The pathophysiology of immunoporosis: innovative therapeutic targets. Inflamm Res 70:859–875. https://doi.org/10.1007/s00011-021-01484-9
Article CAS PubMed Google Scholar
Gao X, Sun X, Cheng H, Ruzbarsky JJ, Mullen M, Huard M, Huard J (2023) MRL/MpJ mice resist to age-related and long-term ovariectomy-induced bone loss: implications for bone regeneration and repair. Int J Mol Sci 24:2396. https://doi.org/10.3390/ijms24032396
Article CAS PubMed PubMed Central Google Scholar
Hensley AP, Mcalinden A (2021) The role of microRNAs in bone development. Bone 143:115760. https://doi.org/10.1016/j.bone.2020.115760
Article CAS PubMed Google Scholar
Huang M, Li X, Zhou C, Si M, Zheng H, Chen L, Ding H (2020) Noncoding RNA mir-205-5p mediates osteoporosis pathogenesis and osteoblast differentiation by regulating RUNX2. J Cell Biochem 121:4196–4203. https://doi.org/10.1002/jcb.29599
Article CAS PubMed Google Scholar
Iaquinta MR, Lanzillotti C, Mazziotta C, Bononi I, Frontini F, Mazzoni E, Oton-Gonzalez L, Rotondo JC, Torreggiani E, Tognon M et al (2021) The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics 11:6573–6591. https://doi.org/10.7150/thno.55664
Article CAS PubMed PubMed Central Google Scholar
Kalu DN, Liu CC, Hardin RR, Hollis BW (1989) The aged rat model of ovarian hormone deficiency bone loss. Endocrinology 124:7–16. https://doi.org/10.1210/endo-124-1-7
Article CAS PubMed Google Scholar
Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406. https://doi.org/10.1016/s1534-5807(02)00157-0
Article CAS PubMed Google Scholar
Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127:1755–1766. https://doi.org/10.1083/jcb.127.6.1755
Article CAS PubMed Google Scholar
Komori T (2018) Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol 149:313–323. https://doi.org/10.1007/s00418-018-1640-6
Article CAS PubMed Google Scholar
Lane NE (2006) Epidemiology, etiology and diagnosis of osteoporosis. Am J Obstet Gynecol 194:S3–S11
Article CAS PubMed Google Scholar
Lane JM, Russell L, Khan SN (2000) Osteoporosis. Clin Orthop Relat Res https://doi.org/10.1097/00003086-200003000-00016
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798. https://doi.org/10.1016/s0092-8674(03)01018-3
Article CAS PubMed Google Scholar
Liu TM, Lee EH (2013) Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Eng Part B Rev 19:254–263. https://doi.org/10.1089/ten.TEB.2012.0527
Lui JC, Raimann A, Hojo H, Dong L, Roschger P, Kikani B, Wintergerst U, Fratzl-Zelman N, Jee YH, Haeusler G et al (2022) A neomorphic variant in SP7 alters sequence specificity and causes a high-turnover bone disorder. Nat Commun 13:700. https://doi.org/10.1038/s41467-022-28318-4
Article CAS PubMed PubMed Central Google Scholar
Marie PJ (2008) Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 473:98–105. https://doi.org/10.1016/j.abb.2008.02.030
Article CAS PubMed Google Scholar
Min Z, Xiaomeng L, Zheng L, Yangge D, Xuejiao L, Longwei L, Xiao Z, Yunsong L, Ping Z, Yongsheng Z (2019) Asymmetrical methyltransferase PRMT3 regulates human mesenchymal stem cell osteogenesis via miR-3648. Cell Death Dis 10:581. https://doi.org/10.1038/s41419-019-1815-7
Article CAS PubMed PubMed Central Google Scholar
Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, De Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29. https://doi.org/10.1016/s0092-8674(01)00622-5
Article CAS PubMed Google Scholar
Peng Y, Xiang H, Chen C, Zheng R, Chai J, Peng J, Jiang S (2013a) MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. Int J Biochem Cell Biol 45:1585–1593. https://doi.org/10.1016/j.biocel.2013.04.029
Article CAS PubMed Google Scholar
Peng Y, Shi K, Wang L, Lu J, Li H, Pan S, Ma C (2013b) Characterization of Osterix protein stability and physiological role in osteoblast differentiation. PLoS ONE 8:e56451. https://doi.org/10.1371/journal.pone.0056451
Comments (0)