Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
Liberti, M. V. & Locasale, J. W. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 41, 211–218 (2016).
Article PubMed PubMed Central Google Scholar
Boschert, V., Teusch, J., Müller-Richter, U. D. A., Brands, R. C. & Hartmann, S. PKM2 modulation in head and neck squamous cell carcinoma. Int. J. Mol. Sci. 23, 775 (2022).
Article PubMed PubMed Central Google Scholar
Paul, S., Ghosh, S. & Kumar, S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin. Cancer Biol. 86, 1216–1230 (2022).
Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).
Devic, S. Warburg effect—a consequence or the cause of carcinogenesis? J. Cancer 7, 817–822 (2016).
Article PubMed PubMed Central Google Scholar
González-Moles, M., Keim-Del Pino, C. & Ramos-García, P. Hallmarks of cancer expression in oral lichen planus: a scoping review of systematic reviews and meta-analyses. Int. J. Mol. Sci. 23, 13099 (2022).
Article PubMed PubMed Central Google Scholar
Guak, H. et al. PGC-1β maintains mitochondrial metabolism and restrains inflammatory gene expression. Sci. Rep. 12, 16028 (2022).
Article PubMed PubMed Central Google Scholar
Li, Y. et al. PGC-1α participates in tumor chemoresistance by regulating glucose metabolism and mitochondrial function. Mol. Cell Biochem. 478, 47–57 (2022).
Wang, H. et al. PGC-1 alpha regulates mitochondrial biogenesis to ameliorate hypoxia-inhibited cementoblast mineralization. Ann. N. Y Acad. Sci. 1516, 300–311 (2022).
Fang, X. Q. et al. PGC1α cooperates with FOXA1 to regulate epithelial mesenchymal transition through the TCF4-TWIST1. Int J. Mol. Sci. 23, 8247 (2022).
Article PubMed PubMed Central Google Scholar
Schmid, S. et al. PGC-1β modulates catabolism and fiber atrophy in the fasting-response of specific skeletal muscle beds. Mol. Metab. 66, 101643 (2022).
Article PubMed PubMed Central Google Scholar
Luo, X. et al. Posttranslational regulation of PGC-1α and its implication in cancer metabolism. Int. J. Cancer 145, 1475–1483 (2019).
Article PubMed PubMed Central Google Scholar
Bost, F. & Kaminski, L. The metabolic modulator PGC-1α in cancer. Am. J. Cancer Res. 9, 198–211 (2019).
PubMed PubMed Central Google Scholar
Yun, S. H., Han, S. H. & Park, J. I. Peroxisome proliferator-activated receptor γ and PGC-1α in cancer: dual actions as tumor promoter and suppressor. PPAR Res. 2018, 6727421 (2018).
Article PubMed PubMed Central Google Scholar
Liu, C. L. et al. PGC1α downregulation and glycolytic phenotype in thyroid cancer. J. Cancer 10, 3819–3829 (2019).
Article PubMed PubMed Central Google Scholar
Zuo, Q. et al. PPARγ coactivator-1α suppresses metastasis of hepatocellular carcinoma by inhibiting Warburg effect by PPARγ-dependent WNT/β-catenin/pyruvate dehydrogenase kinase isozyme 1 axis. Hepatology 73, 644–660 (2021).
Torrano, V. et al. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat. Cell Biol. 18, 645–656 (2016).
Article PubMed PubMed Central Google Scholar
Takeda, D. et al. Decreased mitochondrial copy numbers in oral squamous cell carcinoma. Head Neck 38, 1170–1175 (2016).
Mello, F. W. et al. Prevalence of oral potentially malignant disorders: a systematic review and meta-analysis. J. Oral. Pathol. Med. 47, 633–640 (2018).
Teh, M. T. et al. Molecular signatures of tumour and its microenvironment for precise quantitative diagnosis of oral squamous cell carcinoma: an international multi-cohort diagnostic validation study. Cancers 14, 1389 (2022).
Article PubMed PubMed Central Google Scholar
Brouns, E. R. et al. Oral leukoplakia classification and staging system with incorporation of differentiated dysplasia. Oral Dis. 00, 1–10 (2022).
Li, C. et al. Autofluorescence imaging as a noninvasive tool of risk stratification for malignant transformation of oral leukoplakia: a follow-up cohort study. Oral. Oncol. 130, 105941 (2022).
Amarasinghe, H. et al. Economic cost of managing patients with oral potentially malignant disorders in Sri Lanka. Community Dent. Oral. Epidemiol. 50, 124–129 (2022).
Sathasivam, H. P. et al. Gene expression changes associated with malignant transformation of oral potentially malignant disorders. J. Oral. Pathol. Med. 50, 60–67 (2021).
Sathasivam, H. P. et al. Predicting the clinical outcome of oral potentially malignant disorders using transcriptomic-based molecular pathology. Br. J. Cancer 125, 413–421 (2021).
Article PubMed PubMed Central Google Scholar
Lin, S. C. & Hardie, D. G. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 27, 299–313 (2018).
Certo, M., Tsai, C. H., Pucino, V., Ho, P. C. & Mauro, C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat. Rev. Immunol. 21, 151–161 (2021).
Mishra, D. & Banerjee, D. Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment. Cancers 11, 750 (2019).
Article PubMed PubMed Central Google Scholar
Niu, D. et al. Lactic acid, a driver of tumor-stroma interactions. Int. Immunopharmacol. 106, 108597 (2022).
Summermatter, S., Santos, G., Pérez-Schindler, J. & Handschin, C. Skeletal muscle PGC-1α controls whole-body lactate homeostasis through estrogen-related receptor α-dependent activation of LDH B and repression of LDH A. Proc. Natl. Acad. Sci. USA 110, 8738–8743 (2013).
Article PubMed PubMed Central Google Scholar
LeBleu, V. S. et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16, 1001–1015 (2014).
Bruns, I. et al. Disruption of peroxisome proliferator-activated receptor γ coactivator (PGC)-1α reverts key features of the neoplastic phenotype of glioma cells. J. Biol. Chem. 294, 3037–3050 (2019).
Vazquez, F. et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23, 287–301 (2013).
Article PubMed PubMed Central Google Scholar
Noorolyai, S., Shajari, N., Baghbani, E., Sadreddini, S. & Baradaran, B. The relation between PI3K/AKT signalling pathway and cancer. Gene 698, 120–128 (2019).
Alzahrani, A. S. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol. 59, 125–132 (2019).
He, Y. et al. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target Ther. 6, 425 (2021).
Article PubMed PubMed Central Google Scholar
Rao, J. et al. The key role of PGC-1α in mitochondrial biogenesis and the proliferation of pulmonary artery vascular smooth muscle cells at an early stage of hypoxic exposure. Mol. Cell Biochem. 367, 9–18 (2012).
Shiota, M. et al. Peroxisome proliferator-activated receptor gamma coactivator-1alpha interacts with the androgen receptor (AR) and promotes prostate cancer cell growth by activating the AR. Mol. Endocrinol. 24, 114–127 (2010).
Article PubMed PubMed Central Google Scholar
Wang, L., Yang, M. & Jin, H. PI3K/AKT phosphorylation activates ERRα by upregulating PGC‑1α and PGC‑1β in gallbladder cancer. Mol. Med. Rep. 24, 613 (2021).
Article PubMed PubMed Central Google Scholar
Yun, S. H. & Park, J. I. PGC-1α regulates cell
Comments (0)