EMA. EMA - Guideline on the quality, non-clinical and clinical aspects of gene therapy medicinal products. 2018; Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-non-clinical-clinical-aspects-gene-therapy-medicinal-products_en.pdf.
EPAR - Luxturna [Internet]. 2019. Available from: https://www.ema.europa.eu/en/documents/assessment-report/luxturna-epar-public-assessment-report_en.pdf.
EPAR - Zolgensma [Internet]. 2020. Available from: https://www.ema.europa.eu/en/documents/assessment-report/zolgensma-epar-public-assessment-report_en.pdf.
EMA. EPAR - Glybera [Internet]. 2012. Available from: https://www.ema.europa.eu/en/documents/assessment-report/glybera-epar-public-assessment-report_en.pdf.
Roctavian-EMA [Internet]. 2022. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/roctavian-0.
EMA Upstaza [Internet]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/upstaza.
EMA. EPAR - Hemgenix [Internet]. 2022. Available from: https://www.ema.europa.eu/en/documents/assessment-report/hemgenix-epar-public-assessment-report_en.pdf.
EMA. Guideline on quality, non-clinical and clinical requirements for investigational advanced therapy medicinal products in clinical trials [Internet]. 2019. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-quality-non-clinical-clinical-requirements-investigational-advanced-therapy_en.pdf.
EMA. GUIDELINE ON THE NON-CLINICAL STUDIES REQUIRED BEFORE FIRST CLINICAL USE OF GENE THERAPY MEDICINAL PRODUCTS [Internet]. 2008. Available from: ema.europa.eu/en/documents/scientific-guideline/guideline-non-clinical-studies-required-first-clinical-use-gene-therapy-medicinal-products_en.pdf.
Tucci F, Galimberti S, Naldini L, Valsecchi MG, Aiuti AA. systematic review and meta-analysis of gene therapy with hematopoietic stem and progenitor cells for monogenic disorders. Nat Commun. 2022;13:1315.
Prakash V, Moore M, Yáñez-Muñoz RJ. Current progress in therapeutic gene editing for monogenic diseases. Mol Ther. 2016;24:465–74.
Article CAS PubMed PubMed Central Google Scholar
Kirschner J, Cathomen T. Gene therapy for monogenic inherited disorders. Opportunities and challenges. Deutsches Arzteblatt Int. 2020;117:878–85.
Barron JC, Hurley EP, Parsons MP. Huntingtin and the Synapse. Front Cell Neurosci. 2021;15:1–18.
McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol. 2018;25:24–34.
Article CAS PubMed Google Scholar
Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol [Internet]. 2020;16:529–46. Available from: https://doi.org/10.1038/s41582-020-0389-4.
Oura S, Noda T, Morimura N, Hitoshi S, Nishimasu H, Nagai Y, et al. Precise CAG repeat contraction in a Huntington’s Disease mouse model is enabled by gene editing with SpCas9-NG. Commun Biol. 2021;4:771.
Article CAS PubMed PubMed Central Google Scholar
Das SK, Menezes ME, Bhatia S, Wang XY, Emdad L, Sarkar D, et al. Gene Therapies for Cancer: Strategies, Challenges and Successes. J Cell Physiol. 2015;230:259–71.
Article CAS PubMed PubMed Central Google Scholar
Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11:69.
Article PubMed PubMed Central Google Scholar
Balakrishnan B, Jayandharan G. Basic Biology of Adeno-Associated Virus (AAV) Vectors Used in Gene Therapy. Curr Gene Ther. 2014;14:86–100.
Article CAS PubMed Google Scholar
Wu Z, Asokan A, Samulski RJ. Adeno-associated Virus Serotypes: Vector Toolkit for Human Gene Therapy. Mol Ther. 2006;14:316–27.
Article CAS PubMed Google Scholar
Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, et al. Clades of Adeno-Associated Viruses Are Widely Disseminated in Human Tissues. J Virol. 2004;78:6381–8.
Article CAS PubMed PubMed Central Google Scholar
Agbandje-McKenna M, Kleinschmidt J. AAV capsid structure and cell interactions. Methods Mol Biol. 2011;807:47–92.
Article CAS PubMed Google Scholar
Weinmann J, Grimm D. Next-generation AAV vectors for clinical use: an ever-accelerating race. Virus Genes. 2017;53:707–13.
Article CAS PubMed Google Scholar
Ertl HCJ. T Cell-Mediated Immune Responses to AAV and AAV Vectors. Front Immunol. 2021;12:1–11.
Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: Implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21:704–12.
Article CAS PubMed Google Scholar
Grimm D, Zolotukhin S. E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal-Tailored Acceleration of AAV Evolution. Mol Ther. 2015;23:1819–31.
Article CAS PubMed PubMed Central Google Scholar
Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet. 2014;15:445–51.
Article CAS PubMed PubMed Central Google Scholar
Bartel M, Schaffer D, Büning H. Enhancing the clinical potential of aav vectors by capsid engineering to evade pre-existing immunity. Front Microbiol. 2011;2:204.
Article PubMed PubMed Central Google Scholar
Bartel MA, Weinstein JR, Schaffer DV. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. Gene Ther. 2012;19:694–700.
Article CAS PubMed Google Scholar
Au HKE, Isalan M, Mielcarek M. Gene Therapy Advances: A Meta-Analysis of AAV Usage in Clinical Settings. Front Med. 2022;8:809118.
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduc Targeted Ther. 2021;6:53.
Hacker UT, Bentler M, Kaniowska D, Morgan M, Büning H. Towards clinical implementation of adeno-associated virus (Aav) vectors for cancer gene therapy: Current status and future perspectives. Cancers. 2020;12:1889.
Article CAS PubMed PubMed Central Google Scholar
Gonçalves MAFV. Adeno-associated virus: From defective virus to effective vector. Virol J. 2005;2:1–17.
Erles K, Rohde V, Thaele M, Roth S, Edler L, Schlehofer JR. DNA of adeno-associated virus (AAV) in testicular tissue and in abnormal semen samples. Hum Reprod. 2001;16:2333–7.
Article CAS PubMed Google Scholar
He X, Urip BA, Zhang Z, Ngan CC, Feng B. Evolving AAV-delivered therapeutics towards ultimate cures. J Mol Med. 2021;99:593–617.
Arruda VR, Fields PA, Milner R, Wainwright L, De Miguel MP, Donovan PJ, et al. Lack of germline transmission of vector sequences following systemic administration of recombinant AAV-2 vector in males. Mol Ther. 2001;4:586–92.
Article CAS PubMed Google Scholar
Favaro P, Downey HD, Shangzhen Zhou J, Fraser Wright J, Hauck B, Mingozzi F, et al. Host and vector-dependent effects on the risk of germline transmission of AAV vectors. Mol Ther. 2009;17:1022–30.
Article CAS PubMed PubMed Central Google Scholar
Gaudet D, Méthot J, Déry S, Brisson D, Essiembre C, Tremblay G, et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPL S447X) gene therapy for lipoprotein lipase deficiency: An open-label trial. Gene Ther. 2013;20:361–9.
Article CAS PubMed Google Scholar
Colella P, Ronzitti G, Mingozzi F. Emerging Issues in AAV-Mediated In Vivo Gene Therapy. Mol Ther - Methods Clin Dev. 2018;8:87–104. Available from: https://doi.org/10.1016/j.omtm.2017.11.007.
Article CAS PubMed Google Scholar
Smith RH. Adeno-associated virus integration: virus versus vector. Gene Ther. 2008;15:817–22.
Article CAS PubMed Google Scholar
Valdmanis PN, Lisowski L, Kay MA. RAAV-Mediated tumorigenesis: Still unresolved after an AAV assault. Mol Ther. 2012;20:2014–7.
Article CAS PubMed PubMed Central Google Scholar
Li H, Malani N, Hamilton SR, Schlachterman A, Bussadori G, Edmonson SE, et al. Assessing the potential for AAV vector genotoxicity in a murine model. Blood. 2011;117:3311–9.
Article CAS PubMed PubMed Central Google Scholar
At FDA meeting, gene therapy experts wrestle with field’s blindspots [Internet]. 2021. Available from: https://www.biopharmadive.com/news/fda-gene-therapy-meeting-safety-cancer-liver/606088/.
Chandler RJ, LaFave MC, Varshney GK, Burgess SM, Venditti CP. Genotoxicity in mice following AAV gene delivery: A safety concern for human gene therapy? Mol Ther. 2016;24:198–201.
Article CAS PubMed PubMed Central Google Scholar
Kaiser J. Liver tumor in gene therapy recipient raises concerns about virus widely used in treatment. Science. 2020. Available from: https://www.science.org/content/article/liver-tumor-gene-therapy-recipient-raises-concerns-about-virus-widely-used-treatment#:~:text=Investigation%20of%20hemophilia%20patient%20will,associated%20virus%20in%20causing%20cancer&text=It's%20troubling%20news%20that%20gene,has%20developed%20a%20liver%20tumor.
Bulaklak K, Gersbach CA. The once and future gene therapy. Nat Commun. 2020;11:5820.
Comments (0)