Shamji MH, Valenta R, Jardetzky T, Verhasselt V, Durham SR, Würtzen PA, van Neerven RJJ. The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy. 2021;76:3627–41. https://doi.org/10.1111/all.14908.
Article CAS PubMed Google Scholar
Sterlin D, Gorochov G. When therapeutic IgA antibodies might come of age. Pharmacology. 2021;106:9–19. https://doi.org/10.1159/000510251.
Article CAS PubMed Google Scholar
Kerr MA. The structure and function of human IgA. Biochem J. 1990;271:285–96. https://doi.org/10.1042/bj2710285.
Article CAS PubMed PubMed Central Google Scholar
Toraño A, Tsuzukida Y, Liu YS, Putnam FW. Location and structural significance of the oligosaccharides in human Ig-A1 and IgA2 immunoglobulins. Proc Natl Acad Sci USA. 1977;74:2301–5. https://doi.org/10.1073/pnas.74.6.2301.
Article PubMed PubMed Central Google Scholar
Takahashi K, Smith AD, Poulsen K, Kilian M, Julian BA, Mestecky J, et al. Naturally occurring structural isomers in serum IgA1 o-glycosylation. J Proteome Res. 2012;11:692–702. https://doi.org/10.1021/pr200608q.
Article CAS PubMed Google Scholar
Ding L, Chen X, Cheng H, Zhang T, Li Z. Advances in IgA glycosylation and its correlation with diseases. Front Chem. 2022;10:974854. https://doi.org/10.3389/fchem.2022.974854.
León ED, Francino MP. Roles of secretory immunoglobulin A in host-microbiota interactions in the gut ecosystem. Front Microbiol. 2022;13:880484. https://doi.org/10.3389/fmicb.2022.880484.
Sørensen V, Rasmussen IB, Sundvold V, Michaelsen TE, Sandlie I. Structural requirements for incorporation of J chain into human IgM and IgA. Int Immunol. 2000;12:19–27. https://doi.org/10.1093/intimm/12.1.19.
Johansen FE, Pekna M, Norderhaug IN, Haneberg B, Hietala MA, Krajci P, et al. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J Exp Med. 1999;190:915–22. https://doi.org/10.1084/jem.190.7.915.
Article CAS PubMed PubMed Central Google Scholar
Stadtmueller BM, Huey-Tubman KE, López CJ, Yang Z, Hubbell WL, Bjorkman PJ. The structure and dynamics of secretory component and its interactions with polymeric immunoglobulins. Elife. 2016. https://doi.org/10.7554/eLife.10640.
Article PubMed PubMed Central Google Scholar
Davis SK, Selva KJ, Kent SJ, Chung AW. Serum IgA Fc effector functions in infectious disease and cancer. Immunol Cell Biol. 2020;98:276–86. https://doi.org/10.1111/imcb.12306.
Article CAS PubMed PubMed Central Google Scholar
Cerutti A. The regulation of IgA class switching. Nat Rev Immunol. 2008;8:421–34. https://doi.org/10.1038/nri2322.
Article CAS PubMed PubMed Central Google Scholar
He B, Xu W, Santini PA, Polydorides AD, Chiu A, Estrella J, et al. Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity. 2007;26:812–26. https://doi.org/10.1016/j.immuni.2007.04.014.
Article CAS PubMed Google Scholar
Sterlin D, Fadlallah J, Adams O, Fieschi C, Parizot C, Dorgham K, et al. Human IgA binds a diverse array of commensal bacteria. J Exp Med. 2020. https://doi.org/10.1084/jem.20181635.
Article PubMed PubMed Central Google Scholar
Pabst O, Ohl L, Wendland M, Wurbel M-A, Kremmer E, Malissen B, Förster R. Chemokine receptor CCR9 contributes to the localization of plasma cells to the small intestine. J Exp Med. 2004;199:411–6. https://doi.org/10.1084/jem.20030996.
Article CAS PubMed PubMed Central Google Scholar
Morteau O, Gerard C, Lu B, Ghiran S, Rits M, Fujiwara Y, et al. An indispensable role for the chemokine receptor CCR10 in IgA antibody-secreting cell accumulation. J Immunol. 2008;181:6309–15. https://doi.org/10.4049/jimmunol.181.9.6309.
Article CAS PubMed Google Scholar
Keppler SJ, Goess MC, Heinze JM. The wanderings of gut-derived iga plasma cells: impact on systemic immune responses. Front Immunol. 2021;12:670290. https://doi.org/10.3389/fimmu.2021.670290.
Islam KB, Nilsson L, Sideras P, Hammarström L, Smith CI. TGF-beta 1 induces germ-line transcripts of both IgA subclasses in human B lymphocytes. Int Immunol. 1991;3:1099–106. https://doi.org/10.1093/intimm/3.11.1099.
Article CAS PubMed Google Scholar
Seo G-Y, Jang Y-S, Kim J, Choe J, Han H-J, Lee J-M, et al. Retinoic acid acts as a selective human IgA switch factor. Hum Immunol. 2014;75:923–9. https://doi.org/10.1016/j.humimm.2014.06.021.
Article CAS PubMed Google Scholar
Bos AV, van Gool MMJ, Breedveld AC, van der Mast R, Marsman C, Bouma G, et al. Fcα receptor-1-activated monocytes promote B lymphocyte migration and IgA isotype switching. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms231911132.
Article PubMed PubMed Central Google Scholar
Treptow S, Grün J, Scholz J, Radbruch A, Heine G, Worm M. 9-cis retinoic acid and 1.25-dihydroxyvitamin D3 drive differentiation into IgA+ secreting plasmablasts in human naïve B cells. Eur J Immunol. 2021;51:125–37. https://doi.org/10.1002/eji.202048557.
Mora JR, Iwata M, Eksteen B, Song S-Y, Junt T, Senman B, et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science. 2006;314:1157–60. https://doi.org/10.1126/science.1132742.
Article CAS PubMed Google Scholar
Coombes JL, Siddiqui KRR, Arancibia-Cárcamo CV, Hall J, Sun C-M, Belkaid Y, Powrie F. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007;204:1757–64. https://doi.org/10.1084/jem.20070590.
Article CAS PubMed PubMed Central Google Scholar
Bos A, van Egmond M, Mebius R. The role of retinoic acid in the production of immunoglobulin A. Mucosal Immunol. 2022;15:562–72. https://doi.org/10.1038/s41385-022-00509-8.
Article CAS PubMed Google Scholar
Avery DT, Bryant VL, Ma CS, de Waal Malefyt R, Tangye SG. IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4. J Immunol. 2008;181:1767–79. https://doi.org/10.4049/jimmunol.181.3.1767.
Article CAS PubMed Google Scholar
Quast I, Dvorscek AR, Pattaroni C, Steiner TM, McKenzie CI, Pitt C, et al. Interleukin-21, acting beyond the immunological synapse, independently controls T follicular helper and germinal center B cells. Immunity. 2022;55:1414-1430.e5. https://doi.org/10.1016/j.immuni.2022.06.020.
Article CAS PubMed Google Scholar
Mackay F, Schneider P, Rennert P, Browning J. BAFF and APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21:231–64. https://doi.org/10.1146/annurev.immunol.21.120601.141152.
Article CAS PubMed Google Scholar
Fehres CM, van Uden NO, Yeremenko NG, Fernandez L, Franco Salinas G, van Duivenvoorde LM, et al. APRIL induces a novel subset of IgA+ regulatory B cells that suppress inflammation via expression of IL-10 and PD-L1. Front Immunol. 2019;10:1368. https://doi.org/10.3389/fimmu.2019.01368.
Article CAS PubMed PubMed Central Google Scholar
Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2:328–39. https://doi.org/10.1016/j.chom.2007.09.013.
Article CAS PubMed Google Scholar
Wu W, Sun M, Chen F, Cao AT, Liu H, Zhao Y, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 2017;10:946–56. https://doi.org/10.1038/mi.2016.114.
Article CAS PubMed Google Scholar
Kim M, Qie Y, Park J, Kim CH. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe. 2016;20:202–14. https://doi.org/10.1016/j.chom.2016.07.001.
Article CAS PubMed PubMed Central Google Scholar
Takeuchi T, Miyauchi E, Kanaya T, Kato T, Nakanishi Y, Watanabe T, et al. Acetate differentially regulates IgA reactivity to commensal bacteria. Nature. 2021;595:560–4. https://doi.org/10.1038/s41586-021-03727-5.
Article CAS PubMed Google Scholar
Bunyavanich S, Berin MC. Food allergy and the microbiome: current understandings and future directions. J Allergy Clin Immunol. 2019;144:1468–77. https://doi.org/10.1016/j.jaci.2019.10.019.
Article PubMed PubMed Central Google Scholar
Huus KE, Petersen C, Finlay BB. Diversity and dynamism of IgA-microbiota interactions. Nat Rev Immunol. 2021;21:514–25. https://doi.org/10.1038/s41577-021-00506-1.
Article CAS PubMed Google Scholar
Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158:1000–10. https://doi.org/10.1016/j.cell.2014.08.006.
Comments (0)