Goldenberg, S. L., Nir, G. & Salcudean, S. E. A new era: artificial intelligence and machine learning in prostate cancer. Nat. Rev. Urol. 16, 391–403 (2019).
Bentellis, I., Guerin, S., Khene, Z. E., Khavari, R. & Peyronnet, B. Artificial intelligence in functional urology: how it may shape the future. Curr. Opin. Urol. 31, 385–390 (2021).
Brodie, A. et al. Artificial intelligence in urological oncology: an update and future applications. Urol. Oncol. 39, 379–399 (2021).
Bzdok, D., Altman, N. & Krzywinski, M. Statistics versus machine learning. Nat. Methods 15, 233–234 (2018).
Article CAS PubMed PubMed Central Google Scholar
Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).
Article CAS PubMed PubMed Central Google Scholar
Sidey-Gibbons, J. A. M. & Sidey-Gibbons, C. J. Machine learning in medicine: a practical introduction. BMC Med. Res. Methodol. 19, 64 (2019).
Article PubMed PubMed Central Google Scholar
Lo Vercio, L. et al. Supervised machine learning tools: a tutorial for clinicians. J. Neural Eng. 17, 062001 (2020).
Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).
Article CAS PubMed PubMed Central Google Scholar
Jolliffe, I. T. & Cadima, J. Principal component analysis: a review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 374, 20150202 (2016).
PubMed PubMed Central Google Scholar
Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P. & Green, R. Artificial intelligence and machine learning in pathology: the present landscape of supervised methods. Acad. Pathol. 6, 2374289519873088 (2019).
Article PubMed PubMed Central Google Scholar
Quinn, T. P., Nguyen, T., Lee, S. C. & Venkatesh, S. Cancer as a tissue anomaly: classifying tumor transcriptomes based only on healthy data. Front. Genet. 10, 599 (2019).
Article CAS PubMed PubMed Central Google Scholar
Yakimovich, A., Beaugnon, A., Huang, Y. & Ozkirimli, E. Labels in a haystack: approaches beyond supervised learning in biomedical applications. Patterns 2, 100383 (2021).
Article PubMed PubMed Central Google Scholar
Eckardt, J. N., Bornhauser, M., Wendt, K. & Middeke, J. M. Semi-supervised learning in cancer diagnostics. Front. Oncol. 12, 960984 (2022).
Article PubMed PubMed Central Google Scholar
Bulten, W. et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 21, 233–241 (2020).
Marini, N., Otalora, S., Muller, H. & Atzori, M. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: an experiment on prostate histopathology image classification. Med. Image Anal. 73, 102165 (2021).
Doan, S., Conway, M., Phuong, T. M. & Ohno-Machado, L. Natural language processing in biomedicine: a unified system architecture overview. Methods Mol. Biol. 1168, 275–294 (2014).
Finne, P. et al. Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network. Urology 56, 418–422 (2000).
Article CAS PubMed Google Scholar
Remzi, M. et al. An artificial neural network to predict the outcome of repeat prostate biopsies. Urology 62, 456–460 (2003).
Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55 (2022).
Article CAS PubMed Google Scholar
Chen, A. B. et al. Artificial intelligence applications in urology: reporting standards to achieve fluency for urologists. Urol. Clin. North. Am. 49, 65–117 (2022).
Thykjaer, T. et al. Identification of gene expression patterns in superficial and invasive human bladder cancer. Cancer Res. 61, 2492–2499 (2001).
Dhanasekaran, S. M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).
Article CAS PubMed Google Scholar
Luo, J. et al. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. 61, 4683–4688 (2001).
Singh, D. et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–209 (2002).
Article CAS PubMed Google Scholar
Dyrskjot, L. et al. Identifying distinct classes of bladder carcinoma using microarrays. Nat. Genet. 33, 90–96 (2003).
Article CAS PubMed Google Scholar
Blaveri, E. et al. Bladder cancer outcome and subtype classification by gene expression. Clin. Cancer Res. 11, 4044–4055 (2005).
Article CAS PubMed Google Scholar
Rhodes, D. R. et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1–6 (2004).
Article CAS PubMed PubMed Central Google Scholar
The Cancer Genome Atlas Research Network Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).
The Cancer Genome Atlas Research Network The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).
Article PubMed Central Google Scholar
Shen, H. et al. Integrated molecular characterization of testicular germ cell tumors. Cell Rep. 23, 3392–3406 (2018).
Article CAS PubMed PubMed Central Google Scholar
The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).
Article PubMed Central Google Scholar
The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).
Veldman-Jones, M. H. et al. Evaluating robustness and sensitivity of the NanoString Technologies nCounter platform to enable multiplexed gene expression analysis of clinical samples. Cancer Res. 75, 2587–2593 (2015).
Article CAS PubMed Google Scholar
Zheng, H. et al. Comprehensive review of web servers and bioinformatics tools for cancer prognosis analysis. Front. Oncol. 10, 68 (2020).
Article PubMed PubMed Central Google Scholar
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).
Chandrashekar, D. S. et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia 25, 18–27 (2022).
Article CAS PubMed PubMed Central Google Scholar
Chen, M. M. et al. TCPA v3.0: an integrative platform to explore the pan-cancer analysis of functional proteomic data. Mol. Cell Proteom. 18, S15–S25 (2019).
Navin, N. E. The first five years of single-cell cancer genomics and beyond. Genome Res. 25, 1499–1507 (2015).
Article CAS PubMed PubMed Central Google Scholar
Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e36 (2018).
Article CAS PubMed PubMed Central Google Scholar
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).
Comments (0)