Ogbureke, K. U., Zhao, Q. & Li, Y. P. Human osteopetroses and the osteoclast V-H+-ATPase enzyme system. Front. Biosci. 10, 2940–2954 (2005).
Deng, W. et al. Characterization of mouse Atp6i gene, the gene promoter, and the gene expression. J Bone Miner. Res. 16, 1136–1146 (2001).
Li, Y. P., Chen, W. & Stashenko, P. Molecular cloning and characterization of a putative novel human osteoclast-specific 116-kDa vacuolar proton pump subunit. Biochem. Biophys. Res. Commun. 218, 813–821 (1996).
Sobacchi, C. et al. The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum. Mol. Genet. 10, 1767–1773 (2001).
Frattini, A. et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat. Genet. 25, 343–346 (2000).
Kornak, U. et al. Mutations in the a3 subunit of the vacuolar H+-ATPase cause infantile malignant osteopetrosis. Hum. Mol. Genet. 9, 2059–2063 (2000).
Li, Y. P., Chen, W., Liang, Y., Li, E. & Stashenko, P. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat. Genet. 23, 447–451 (1999).
Jiang, H. et al. RNAi-mediated silencing of Atp6i and Atp6i Haploinsufficiency prevents both bone loss and inflammation in a mouse model of periodontal disease. PLoS ONE 8, e58599 (2013).
PubMed PubMed Central Google Scholar
Ma, J. et al. RNA interference-mediated silencing of Atp6i prevents both periapical bone erosion and inflammation in the mouse model of endodontic disease. Infect. Immun. 81, 1021–1030 (2013).
PubMed PubMed Central Google Scholar
Pan, J. et al. The triple functions of D2 silencing in treatment of periapical disease. J. Endod. 43, 272–278 (2017).
Li, S. et al. Targeting Atp6v1c1 prevents inflammation and bone erosion caused by periodontitis and reveals its critical function in osteoimmunology. PLoS ONE 10, e0134903 (2015).
PubMed PubMed Central Google Scholar
Zhu, Z. et al. Ac45 silencing mediated by AAV-sh-Ac45-RNAi prevents both bone loss and inflammation caused by periodontitis. J. Clin. Periodontol. 42, 599–608 (2015).
PubMed PubMed Central Google Scholar
Yang, D. Q. et al. V-ATPase subunit ATP6AP1 (Ac45) regulates osteoclast differentiation, extracellular acidification, lysosomal trafficking, and protease exocytosis in osteoclast-mediated bone resorption. J. Bone Miner. Res. 27, 1695–1707 (2012).
Lungová, V. et al. Tooth‐bone morphogenesis during postnatal stages of mouse first molar development. J. Anat. 218, 699–716 (2011).
PubMed PubMed Central Google Scholar
Huang, X., Bringas, P., Slavkin, H. C. & Chai, Y. Fate of HERS during tooth root development. Dev. Biol. 334, 22–30 (2009).
PubMed PubMed Central Google Scholar
Hosoya, A., Kim, J.-Y., Cho, S.-W. & Jung, H.-S. BMP4 signaling regulates formation of Hertwig’s epithelial root sheath during tooth root development. Cell Tissue Res. 333, 503–509 (2008).
Dassule, H. R., Lewis, P., Bei, M., Maas, R. & McMahon, A. P. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127, 4775–4785 (2000).
Yokohama-Tamaki, T. et al. Cessation of Fgf10 signaling, resulting in a defective dental epithelial stem cell compartment, leads to the transition from crown to root formation. Development 133, 1359–1366 (2006).
Li, J. et al. SMAD4-mediated WNT signaling controls the fate of cranial neural crest cells during tooth morphogenesis. Development 138, 1977–1989 (2011).
PubMed PubMed Central Google Scholar
Kim, T. et al. β-catenin is required in odontoblasts for tooth root formation. J. Dental Res. 92, 215–221 (2013).
Huang, X., Xu, X., Bringas, P., Hung, Y. P. & Chai, Y. Smad4‐Shh‐Nfic signaling cascade–mediated epithelial‐mesenchymal interaction is crucial in regulating tooth root development. J. Bone Miner. Res. 25, 1167–1178 (2010).
Oka, S. et al. Cell autonomous requirement for TGF-β signaling during odontoblast differentiation and dentin matrix formation. Mechan. Dev. 124, 409–415 (2007).
Wu, M., Chen, G. & Li, Y.-P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 4, 1–21 (2016).
Gao, Y. et al. Disruption of Smad4 in odontoblasts causes multiple keratocystic odontogenic tumors and tooth malformation in mice. Mol. Cell. Biol. 29, 5941–5951 (2009).
PubMed PubMed Central Google Scholar
Wang, Y., Cox, M. K., Coricor, G., MacDougall, M. & Serra, R. Inactivation of Tgfbr2 in Osterix-Cre expressing dental mesenchyme disrupts molar root formation. Dev. Biol. 382, 27–37 (2013).
PubMed PubMed Central Google Scholar
Cao, X. Targeting osteoclast-osteoblast communication. Nat. Med. 17, 1344–1346 (2011).
Weivoda, M. M. et al. Osteoclast TGF‐β receptor signaling induces Wnt1 secretion and couples bone resorption to bone formation. J. Bone Mineral Res. 31, 76–85 (2016).
Tang, Y. et al. TGF-β1–induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 15, 757–765 (2009).
PubMed PubMed Central Google Scholar
Narayanan, K. et al. Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc. Natl. Acad. Sci. USA 98, 4516–4521 (2001).
PubMed PubMed Central Google Scholar
Sobacchi, C., Schulz, A., Coxon, F. P., Villa, A. & Helfrich, M. H. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat. Rev. Endocrinol. 9, 522–536 (2013).
Huang, X.-F. & Chai, Y. Molecular regulatory mechanism of tooth root development. Int. J. Oral Sci. 4, 177–181 (2013).
Lacerda-Pinheiro, S. et al. Concomitant multipotent and unipotent dental pulp progenitors and their respective contribution to mineralised tissue formation. Eur. Cell Mater. 23, 371–386 (2012).
Thesleff, I. & Nieminen, P. Tooth morphogenesis and cell differentiation. Curr. Opin. Cell Biol. 8, 844–850 (1996).
Keränen, S., Åberg, T., Kettunen, P., Thesleff, I. & Jernvall, J. Association of developmental regulatory genes with the development of different molar tooth shapes in two species of rodents. Dev. Genes Evol. 208, 477–486 (1998).
Thesleff, I. The genetic basis of tooth development and dental defects. Am. J. Med. Genet. Part A 140, 2530–2535 (2006).
Lee, D.-S. et al. Nuclear factor IC is essential for odontogenic cell proliferation and odontoblast differentiation during tooth root development. J. Biol. Chem. 284, 17293–17303 (2009).
PubMed PubMed Central Google Scholar
Zhang, H. et al. Essential role of osterix for tooth root but not crown dentin formation. J. Bone Mineral Res. 30, 742–746 (2015).
Thyagarajan, T., Sreenath, T., Cho, A., Wright, J. T. & Kulkarni, A. B. Reduced expression of dentin sialophosphoprotein is associated with dysplastic dentin in mice overexpressing transforming growth factor-β1 in teeth. J. Biol. Chem. 276, 11016–11020 (2001).
Unterbrink, A., O’sullivan, M., Chen, S. & MacDougall, M. TGFβ-1 downregulates DMP-1 and DSPP in odontoblasts. Connect. Tissue Res. 43, 354–358 (2002).
Ono, W., Sakagami, N., Nishimori, S., Ono, N. & Kronenberg, H. M. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation. Nat. Commun. 7, 11277 (2016).
Huang, H. et al. Bone resorption deficiency affects tooth root development in RANKL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts. Bone 114, 161–171 (2018).
Wise, G. & King, G. Mechanisms of tooth eruption and orthodontic tooth movement. J. Dental Res. 87, 414–434 (2008).
Alfaqeeh, S. et al. Root and eruption defects in c-Fos mice are driven by loss of osteoclasts. J. Dental Res. 94, 1724–1731 (2015).
Berdal, A. et al. Osteoclasts in the dental microenvironment: a delicate balance controls dental histogenesis. Cells Tissues Organs 194, 238–243 (2011).
Wang, X.-P. Tooth eruption without roots. J. Dent. Res. 92, 212–214 (2013).
Chen, W. et al. C/EBPα regulates osteoclast lineage commitment. Proc. Natl. Acad. Sci. USA 110, 7294–7299 (2013).
PubMed PubMed Central Google Scholar
Chen, W. et al. Novel pycnodysostosis mouse model uncovers cathepsin K function as a potential regulator of osteoclast apoptosis and senescence. Hum. Mol. Genet. 16, 410–423 (2007).
Yang, S. & Li, Y.-P. RGS10-null mutation impairs osteoclast differentiation resulting from the loss of [Ca2+] i oscillation regulation. Genes Dev. 21, 1803–1816 (2007).
PubMed PubMed Central Google Scholar
Gao, B. et al. Inhibiting periapical lesions through AAV-RNAi silencing of cathepsin K. J. Dent. Res. 92, 180–186 (2013).
Hao, L. et al. A small molecule, Odanacatib, inhibits inflammation and bone loss caused by endodontic disease. Infect. Immun. https://doi.org/10.1128/iai.01713-14 (2015).
Tang, C. Y. et al. Runx1 is a central regulator of osteogenesis for bone homeostasis by orchestrating BMP and WNT signaling pathways. PLoS Genet. 17, e1009233 (2021).
PubMed PubMed Central Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
PubMed PubMed Central Google Scholar
Chen, W. et al. Cbfbeta deletion in mice recapitulates cleidocranial dysplasia and reveals multiple functions of Cbfbeta required for skeletal development. Proc. Natl. Acad. Sci. USA. 111, 8482–8487 (2014).
PubMed PubMed Central Google Scholar
Pavía-Jiménez, A., Tcheuyap, V. T. & Brugarolas, J. Establishing a human renal cell carcinoma tumorgraft platform for preclinical drug testing. Nat. Protoc. 9, 1848–1859 (2014).
Comments (0)