Atp6i deficient mouse model uncovers transforming growth factor-β1 /Smad2/3 as a key signaling pathway regulating odontoblast differentiation and tooth root formation

Ogbureke, K. U., Zhao, Q. & Li, Y. P. Human osteopetroses and the osteoclast V-H+-ATPase enzyme system. Front. Biosci. 10, 2940–2954 (2005).

PubMed  Google Scholar 

Deng, W. et al. Characterization of mouse Atp6i gene, the gene promoter, and the gene expression. J Bone Miner. Res. 16, 1136–1146 (2001).

PubMed  Google Scholar 

Li, Y. P., Chen, W. & Stashenko, P. Molecular cloning and characterization of a putative novel human osteoclast-specific 116-kDa vacuolar proton pump subunit. Biochem. Biophys. Res. Commun. 218, 813–821 (1996).

PubMed  Google Scholar 

Sobacchi, C. et al. The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum. Mol. Genet. 10, 1767–1773 (2001).

PubMed  Google Scholar 

Frattini, A. et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat. Genet. 25, 343–346 (2000).

PubMed  Google Scholar 

Kornak, U. et al. Mutations in the a3 subunit of the vacuolar H+-ATPase cause infantile malignant osteopetrosis. Hum. Mol. Genet. 9, 2059–2063 (2000).

PubMed  Google Scholar 

Li, Y. P., Chen, W., Liang, Y., Li, E. & Stashenko, P. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat. Genet. 23, 447–451 (1999).

PubMed  Google Scholar 

Jiang, H. et al. RNAi-mediated silencing of Atp6i and Atp6i Haploinsufficiency prevents both bone loss and inflammation in a mouse model of periodontal disease. PLoS ONE 8, e58599 (2013).

PubMed  PubMed Central  Google Scholar 

Ma, J. et al. RNA interference-mediated silencing of Atp6i prevents both periapical bone erosion and inflammation in the mouse model of endodontic disease. Infect. Immun. 81, 1021–1030 (2013).

PubMed  PubMed Central  Google Scholar 

Pan, J. et al. The triple functions of D2 silencing in treatment of periapical disease. J. Endod. 43, 272–278 (2017).

PubMed  Google Scholar 

Li, S. et al. Targeting Atp6v1c1 prevents inflammation and bone erosion caused by periodontitis and reveals its critical function in osteoimmunology. PLoS ONE 10, e0134903 (2015).

PubMed  PubMed Central  Google Scholar 

Zhu, Z. et al. Ac45 silencing mediated by AAV-sh-Ac45-RNAi prevents both bone loss and inflammation caused by periodontitis. J. Clin. Periodontol. 42, 599–608 (2015).

PubMed  PubMed Central  Google Scholar 

Yang, D. Q. et al. V-ATPase subunit ATP6AP1 (Ac45) regulates osteoclast differentiation, extracellular acidification, lysosomal trafficking, and protease exocytosis in osteoclast-mediated bone resorption. J. Bone Miner. Res. 27, 1695–1707 (2012).

PubMed  Google Scholar 

Lungová, V. et al. Tooth‐bone morphogenesis during postnatal stages of mouse first molar development. J. Anat. 218, 699–716 (2011).

PubMed  PubMed Central  Google Scholar 

Huang, X., Bringas, P., Slavkin, H. C. & Chai, Y. Fate of HERS during tooth root development. Dev. Biol. 334, 22–30 (2009).

PubMed  PubMed Central  Google Scholar 

Hosoya, A., Kim, J.-Y., Cho, S.-W. & Jung, H.-S. BMP4 signaling regulates formation of Hertwig’s epithelial root sheath during tooth root development. Cell Tissue Res. 333, 503–509 (2008).

PubMed  Google Scholar 

Dassule, H. R., Lewis, P., Bei, M., Maas, R. & McMahon, A. P. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127, 4775–4785 (2000).

PubMed  Google Scholar 

Yokohama-Tamaki, T. et al. Cessation of Fgf10 signaling, resulting in a defective dental epithelial stem cell compartment, leads to the transition from crown to root formation. Development 133, 1359–1366 (2006).

PubMed  Google Scholar 

Li, J. et al. SMAD4-mediated WNT signaling controls the fate of cranial neural crest cells during tooth morphogenesis. Development 138, 1977–1989 (2011).

PubMed  PubMed Central  Google Scholar 

Kim, T. et al. β-catenin is required in odontoblasts for tooth root formation. J. Dental Res. 92, 215–221 (2013).

Google Scholar 

Huang, X., Xu, X., Bringas, P., Hung, Y. P. & Chai, Y. Smad4‐Shh‐Nfic signaling cascade–mediated epithelial‐mesenchymal interaction is crucial in regulating tooth root development. J. Bone Miner. Res. 25, 1167–1178 (2010).

PubMed  Google Scholar 

Oka, S. et al. Cell autonomous requirement for TGF-β signaling during odontoblast differentiation and dentin matrix formation. Mechan. Dev. 124, 409–415 (2007).

Google Scholar 

Wu, M., Chen, G. & Li, Y.-P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 4, 1–21 (2016).

Gao, Y. et al. Disruption of Smad4 in odontoblasts causes multiple keratocystic odontogenic tumors and tooth malformation in mice. Mol. Cell. Biol. 29, 5941–5951 (2009).

PubMed  PubMed Central  Google Scholar 

Wang, Y., Cox, M. K., Coricor, G., MacDougall, M. & Serra, R. Inactivation of Tgfbr2 in Osterix-Cre expressing dental mesenchyme disrupts molar root formation. Dev. Biol. 382, 27–37 (2013).

PubMed  PubMed Central  Google Scholar 

Cao, X. Targeting osteoclast-osteoblast communication. Nat. Med. 17, 1344–1346 (2011).

PubMed  Google Scholar 

Weivoda, M. M. et al. Osteoclast TGF‐β receptor signaling induces Wnt1 secretion and couples bone resorption to bone formation. J. Bone Mineral Res. 31, 76–85 (2016).

Google Scholar 

Tang, Y. et al. TGF-β1–induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 15, 757–765 (2009).

PubMed  PubMed Central  Google Scholar 

Narayanan, K. et al. Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc. Natl. Acad. Sci. USA 98, 4516–4521 (2001).

PubMed  PubMed Central  Google Scholar 

Sobacchi, C., Schulz, A., Coxon, F. P., Villa, A. & Helfrich, M. H. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat. Rev. Endocrinol. 9, 522–536 (2013).

PubMed  Google Scholar 

Huang, X.-F. & Chai, Y. Molecular regulatory mechanism of tooth root development. Int. J. Oral Sci. 4, 177–181 (2013).

Google Scholar 

Lacerda-Pinheiro, S. et al. Concomitant multipotent and unipotent dental pulp progenitors and their respective contribution to mineralised tissue formation. Eur. Cell Mater. 23, 371–386 (2012).

PubMed  Google Scholar 

Thesleff, I. & Nieminen, P. Tooth morphogenesis and cell differentiation. Curr. Opin. Cell Biol. 8, 844–850 (1996).

PubMed  Google Scholar 

Keränen, S., Åberg, T., Kettunen, P., Thesleff, I. & Jernvall, J. Association of developmental regulatory genes with the development of different molar tooth shapes in two species of rodents. Dev. Genes Evol. 208, 477–486 (1998).

PubMed  Google Scholar 

Thesleff, I. The genetic basis of tooth development and dental defects. Am. J. Med. Genet. Part A 140, 2530–2535 (2006).

PubMed  Google Scholar 

Lee, D.-S. et al. Nuclear factor IC is essential for odontogenic cell proliferation and odontoblast differentiation during tooth root development. J. Biol. Chem. 284, 17293–17303 (2009).

PubMed  PubMed Central  Google Scholar 

Zhang, H. et al. Essential role of osterix for tooth root but not crown dentin formation. J. Bone Mineral Res. 30, 742–746 (2015).

Google Scholar 

Thyagarajan, T., Sreenath, T., Cho, A., Wright, J. T. & Kulkarni, A. B. Reduced expression of dentin sialophosphoprotein is associated with dysplastic dentin in mice overexpressing transforming growth factor-β1 in teeth. J. Biol. Chem. 276, 11016–11020 (2001).

PubMed  Google Scholar 

Unterbrink, A., O’sullivan, M., Chen, S. & MacDougall, M. TGFβ-1 downregulates DMP-1 and DSPP in odontoblasts. Connect. Tissue Res. 43, 354–358 (2002).

PubMed  Google Scholar 

Ono, W., Sakagami, N., Nishimori, S., Ono, N. & Kronenberg, H. M. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation. Nat. Commun. 7, 11277 (2016).

Huang, H. et al. Bone resorption deficiency affects tooth root development in RANKL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts. Bone 114, 161–171 (2018).

PubMed  Google Scholar 

Wise, G. & King, G. Mechanisms of tooth eruption and orthodontic tooth movement. J. Dental Res. 87, 414–434 (2008).

Google Scholar 

Alfaqeeh, S. et al. Root and eruption defects in c-Fos mice are driven by loss of osteoclasts. J. Dental Res. 94, 1724–1731 (2015).

Google Scholar 

Berdal, A. et al. Osteoclasts in the dental microenvironment: a delicate balance controls dental histogenesis. Cells Tissues Organs 194, 238–243 (2011).

PubMed  Google Scholar 

Wang, X.-P. Tooth eruption without roots. J. Dent. Res. 92, 212–214 (2013).

Chen, W. et al. C/EBPα regulates osteoclast lineage commitment. Proc. Natl. Acad. Sci. USA 110, 7294–7299 (2013).

PubMed  PubMed Central  Google Scholar 

Chen, W. et al. Novel pycnodysostosis mouse model uncovers cathepsin K function as a potential regulator of osteoclast apoptosis and senescence. Hum. Mol. Genet. 16, 410–423 (2007).

PubMed  Google Scholar 

Yang, S. & Li, Y.-P. RGS10-null mutation impairs osteoclast differentiation resulting from the loss of [Ca2+] i oscillation regulation. Genes Dev. 21, 1803–1816 (2007).

PubMed  PubMed Central  Google Scholar 

Gao, B. et al. Inhibiting periapical lesions through AAV-RNAi silencing of cathepsin K. J. Dent. Res. 92, 180–186 (2013).

PubMed  Google Scholar 

Hao, L. et al. A small molecule, Odanacatib, inhibits inflammation and bone loss caused by endodontic disease. Infect. Immun. https://doi.org/10.1128/iai.01713-14 (2015).

Tang, C. Y. et al. Runx1 is a central regulator of osteogenesis for bone homeostasis by orchestrating BMP and WNT signaling pathways. PLoS Genet. 17, e1009233 (2021).

PubMed  PubMed Central  Google Scholar 

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

PubMed  PubMed Central  Google Scholar 

Chen, W. et al. Cbfbeta deletion in mice recapitulates cleidocranial dysplasia and reveals multiple functions of Cbfbeta required for skeletal development. Proc. Natl. Acad. Sci. USA. 111, 8482–8487 (2014).

PubMed  PubMed Central  Google Scholar 

Pavía-Jiménez, A., Tcheuyap, V. T. & Brugarolas, J. Establishing a human renal cell carcinoma tumorgraft platform for preclinical drug testing. Nat. Protoc. 9, 1848–1859 (2014).

PubMed  PubMed Central 

Comments (0)

No login
gif