Albornoz EA, Woodruff TM, Gordon R (2018) Inflammasomes in CNS diseases. Inflammasomes: Clinical and Therapeutic Implications. Springer 41-60
Ayoub MA, Landomiel F, Gallay N, Jégot G, Poupon A, Crépieux P, Reiter E (2015a) Assessing gonadotropin receptor function by resonance energy transfer-based assays. Front Endocrinol 6:130
Ayoub MA, Zhang Y, Kelly RS, See HB, Johnstone EK, McCall EA, Williams JH, Kelly DJ, Pfleger KD (2015b) Functional interaction between angiotensin II receptor type 1 and chemokine (CC motif) receptor 2 with implications for chronic kidney disease. PLoS One 10(3):e0119803
Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA (2009) Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. The Journal of Immunology 183(2):787–791
Article CAS PubMed Google Scholar
Benetatos J, Bennett RE, Evans HT, Ellis SA, Hyman BT, Bodea LG, Götz J (2020) PTEN activation contributes to neuronal and synaptic engulfment by microglia in tauopathy. Acta Neuropathologica 140(1):7–24. https://doi.org/10.1007/s00401-020-02151-9
Carracedo A, Pandolfi PP (2008) The PTEN–PI3K pathway: of feedbacks and cross-talks. Oncogene 27(41):5527–5541. https://doi.org/10.1038/onc.2008.247
Charest PG, Terrillon S, Bouvier M (2005) Monitoring agonist-promoted conformational changes of beta-arrestin in living cells by intramolecular BRET. EMBO Rep 6(4):334–340
Article CAS PubMed PubMed Central Google Scholar
Charli A, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG (2016) Alterations in mitochondrial dynamics induced by tebufenpyrad and pyridaben in a dopaminergic neuronal cell culture model. Neurotoxicology 53:302–313. https://www.sciencedirect.com/science/article/pii/S0161813X15000947
Cheng J, Liao Y, Dong Y, Hu H, Yang N, Kong X, Li S, Li X, Guo J, Qin L, Yu J (2020) Microglial autophagy defect causes parkinson disease-like symptoms by accelerating inflammasome activation in mice. Autophagy 16(12):2193–2205. https://doi.org/10.1080/15548627.2020.1719723
Cui W, Wang S, Wang Z, Wang Z, Sun C, Zhang Y (2017) Inhibition of PTEN Attenuates Endoplasmic Reticulum Stress and Apoptosis via Activation of PI3K/AKT Pathway in Alzheimer’s Disease. Neurochem Res 42(11):3052–3060
Article CAS PubMed Google Scholar
Deora V, Lee JD, Albornoz EA, McAlary L, Jagaraj CJ, Robertson AA, Atkin JD, Cooper MA, Schroder K, Yerbury JJ (2020) The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins. Glia 68(2):407–421
Diaz-Ruiz O, Zapata A, Shan L, Zhang Y, Tomac AC, Malik N, de la Cruz F, Bäckman CM (2009) Selective deletion of PTEN in dopamine neurons leads to trophic effects and adaptation of striatal medium spiny projecting neurons. PloS one 4(9):e7027-e7027. https://pubmed.ncbi.nlm.nih.gov/19750226
Domanskyi A, Geiβler C, Vinnikov IA, Alter H, Schober A, Vogt MA, Gass P, Parlato R, Schütz G (2011) Pten ablation in adult dopaminergic neurons is neuroprotective in Parkinson's disease models. FASEB J 25(9):2898–2910. https://www.ncbi.nlm.nih.gov/pubmed/21593433
Frere S, Slutsky I (2016) Targeting PTEN interactions for Alzheimer's disease. Nature Neurosci 19(3):416–418. https://doi.org/10.1038/nn.4248
Gary DS, Mattson MP (2002) PTEN regulates Akt kinase activity in hippocampal neurons and increases their sensitivity to glutamate and apoptosis. NeuroMol Med 2(3):261–269. https://doi.org/10.1385/NMM:2:3:261
Gericke A, Munson M, Ross AH (2006) Regulation of the PTEN phosphatase. Gene 374:1–9
Article CAS PubMed Google Scholar
Ghosh A, Kanthasamy A, Joseph J, Anantharam V, Srivastava P, Dranka BP, Kalyanaraman B, Kanthasamy AG (2012) Anti-inflammatory and neuroprotective effects of an orally active apocynin derivative in pre-clinical models of Parkinson's disease. J Neuroinflammation 9:241. https://www.ncbi.nlm.nih.gov/pubmed/23092448
Gordon R, Albornoz EA, Christie DC, Langley MR, Kumar V, Mantovani S, Robertson AA, Butler MS, Rowe DB, O’Neill LA, Kanthasamy AG (2018) Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med 10:eaah4066. https://doi.org/10.1126/scitranslmed.aah4066
Gordon R, Anantharam V, Kanthasamy AG, Kanthasamy A (2012) Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation. J Neuroinflammation 9:82
Article CAS PubMed PubMed Central Google Scholar
Gordon R, Hogan CE, Neal ML, Anantharam V, Kanthasamy AG, Kanthasamy A (2011) A simple magnetic separation method for high-yield isolation of pure primary microglia. J Neurosci Methods 194(2):287–296. https://www.sciencedirect.com/science/article/pii/S0165027010006102
Gordon R, Singh N, Lawana V, Ghosh A, Harischandra DS, Jin H, Hogan C, Sarkar S, Rokad D, Panicker N, Anantharam V (2016) Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease. Neurobiol Dis 93:96–114. https://www.sciencedirect.com/science/article/pii/S0969996116300900
Guan Y, Yang F, Yao Q, Shi J, Wang G, Gu Z, Zhou F, Shen J (2015) Impacts of phosphatase and tensin homology deleted on chromosome ten (PTEN)-inhibiting chitosan scaffold on growth and differentiation of neural stem cells. Int J Clin Exp Med 8(8):14308–14315. https://www.ncbi.nlm.nih.gov/pubmed/26550415
Hariz M, Obeso JA (2017) What Would Dr. James Parkinson Think Today? I. The Role of Functional Neurosurgery for Parkinson's Disease. Mov Disord 32(1):2–4. https://www.ncbi.nlm.nih.gov/pubmed/28124429
Hasegawa Y, Inagaki T, Sawada M, Suzumura A (2000) Impaired cytokine production by peripheral blood mononuclear cells and monocytes/macrophages in Parkinson’s disease. Acta Neurologica Scandinavica 101(3):159–164
Article CAS PubMed Google Scholar
He J, Long C, Huang Z, Zhou X, Kuang X, Liu L, Liu H, Tang Y, Fan Y, Ning J, Ma X (2017) PTEN Reduced UVB-Mediated Apoptosis in Retinal Pigment Epithelium Cells. Biomed Res Int 2017:3681707. https://www.ncbi.nlm.nih.gov/pubmed/28321407
Heales SJ, Menzes A, Davey GP (2011) Depletion of glutathione does not affect electron transport chain complex activity in brain mitochondria: Implications for Parkinson disease and postmortem studies. Free Radical Biology and Medicine 50(7):899–902
Article CAS PubMed Google Scholar
Hou SQ, Ouyang M, Brandmaier A, Hao H, Shen WH (2017) PTEN in the maintenance of genome integrity: From DNA replication to chromosome segregation. Bioessays 39(10). https://www.ncbi.nlm.nih.gov/pubmed/28891157
Johnson AM, Ou Z-YA, Gordon R, Saminathan H (2022) Environmental neurotoxicants and inflammasome activation in Parkinson’s disease–a focus on the gut-brain axis. The international journal of biochemistry & cell biology 142:106113
Johnson TA, Singla DK (2018) PTEN inhibitor VO-OHpic attenuates inflammatory M1 macrophages and cardiac remodeling in doxorubicin-induced cardiomyopathy. Am J Physiol-Heart Circulatory Physiol 315(5):H1236–H1249. https://journals.physiology.org/doi/abs/10.1152/ajpheart.00121.2018
Jose S, Groves NJ, Roper KE, Gordon R (2022) Mechanisms of NLRP3 activation and pathology during neurodegeneration. Int J Biochem Cell Biol 151:106273. https://www.sciencedirect.com/science/article/pii/S1357272522001182
Kaul S, Anantharam V, Yang Y, Choi CJ, Kanthasamy A, Kanthasamy AG (2005) Tyrosine phosphorylation regulates the proteolytic activation of protein kinase Cδ in dopaminergic neuronal cells. Journal of Biological Chemistry 280(31):28721–28730
Article CAS PubMed Google Scholar
Kaul S, Kanthasamy A, Kitazawa M, Anantharam V, Kanthasamy AG (2003) Caspase-3 dependent proteolytic activation of protein kinase Cδ mediates and regulates 1-methyl-4-phenylpyridinium (MPP+)-induced apoptotic cell death in dopaminergic cells: relevance to oxidative stress in dopaminergic degeneration. European Journal of Neuroscience 18(6):1387–1401
Kim RH, Mak TW (2006) Tumours and tremors: how PTEN regulation underlies both. Br J Cancer 94(5):620–624. https://www.ncbi.nlm.nih.gov/pubmed/16495927
Korczyn AD, Hassin-Baer S (2015) Can the disease course in Parkinson's disease be slowed? BMC Med 13:295. https://www.ncbi.nlm.nih.gov/pubmed/26653056
Lee YR, Chen M, Pandolfi PP (2018) The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol 19(9):547–562. https://doi.org/10.1038/s41580-018-0015-0
Lima-Fernandes E, Misticone S, Boularan C, Paradis JS, Enslen H, Roux PP, Bouvier M, Baillie GS, Marullo S, Scott MG (2014) A biosensor to monitor dynamic regulation and function of tumour suppressor PTEN in living cells. Nat Commun 5:4431
Article CAS PubMed Google Scholar
Lin M, Chandramani-Shivalingappa P, Jin H, Ghosh A, Anantharam V, Ali S, Kanthasamy AG, Kanthasamy A (2012) Methamphetamine-induced neurotoxicity linked to ubiquitin-proteasome system dysfunction and autophagy-related changes that can be modulated by protein kinase C delta in dopaminergic neuronal cells. Neuroscience 210:308–332. https://www.ncbi.nlm.nih.gov/pubmed/22445524
Lohse MJ, Nuber S, Hoffmann C (2012) Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 64(2):299–336
Article CAS PubMed Google Scholar
Lungu C, Cedarbaum JM, Dawson TM, Dorsey ER, Faraco C, Federoff HJ, Fiske B, Fox R, Goldfine AM, Kieburtz K, Macklin EA (2021) Seeking progress in disease modification in Parkinson disease. Parkinsonism Relat Disord 90:134–141. https://www.ncbi.nlm.nih.gov/pubmed/34561166
Madeira MH, Boia R, Santos PF, Ambrósio AF, Santiago AR (2015) Contribution of Microglia-Mediated Neuroinflammation to Retinal Degenerative Diseases. Mediators Inflammation 673090. https://doi.org/10.1155/2015/673090
Maehama T, Dixon JE (1999) PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 9(4):125–128. https://www.sciencedirect.com/science/article/pii/S0962892499015196
Martinon F, Tschopp J (2007) Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death & Differentiation 14(1):10–22
Mkaddem SB, Murua A, Flament H, Titeca-Beauport D, Bounaix C, Danelli L, Launay P, Benhamou M, Blank U, Daugas E, Charles N, Monteiro RC (2017) Lyn and Fyn function as molecular switches that control immunoreceptors to direct homeostasis or inflammation. Nat Commun 8(1):246
Article PubMed PubMed Central Google Scholar
Ning K, Drepper C, Valori CF, Ahsan M, Wyles M, Higginbottom A, Herrmann T, Shaw P, Azzouz M, Sendtner M (2010) PTEN depletion rescues axonal growth defect and improves survival in SMN-deficient motor neurons. Hum Mol Genet 19(16):3159–3168. https://www.ncbi.nlm.nih.gov/pubmed/20525971
Nishimura M, Mizuta I, Mizuta E, Yamasaki S, Ohta M, Kaji R, Kuno S (2001) Tumor necrosis factor gene polymorphisms in patients with sporadic Parkinson's disease. Neurosci Lett 311(1):1–4. https://www.sciencedirect.com/science/article/pii/S0304394001021115
Ogino M, Ichimura M, Nakano N, Minami A, Kitagishi Y, Matsuda S (2016) Roles of PTEN with DNA Repair in Parkinson's Disease. Int J Mol Sci 17(6):954. https://pubmed.ncbi.nlm.nih.gov/27314344. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926487/
Olanow CW (2014) Parkinson disease: Gene therapy for Parkinson disease--a hope, or a dream? Nat Rev Neurol 10(4):186–187. https://www.ncbi.nlm.nih.gov/pubmed/24662536
Olanow CW, Obeso JA (2011) Levodopa toxicity and Parkinson disease: still a need for equipoise. Neurology 77(15):1416–1417. https://www.ncbi.nlm.nih.gov/pubmed/21917774
Pajares M, I. Rojo A, Manda G, Boscá L, Cuadrado A (2020) Inflammation in Parkinson's Disease: Mechanisms and Therapeutic Implications. Cells 9(7):1687. https://pubmed.ncbi.nlm.nih.gov/32674367. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408280/
Palacios-Moreno J, Foltz L, Guo A, Stokes MP, Kuehn ED, George L, Comb M, Grimes ML (2015) Neuroblastoma tyrosine kinase signaling networks involve FYN and LYN in endosomes and lipid rafts. PLoS Comput Biol 11(4):e1004130
Article PubMed PubMed Central Google Scholar
Panicker N, Sarkar S, Harischandra DS, Neal M, Kam TI, Jin H, Saminathan H, Langley M, Charli A, Samidurai M, Rokad D (2019) Fyn kinase regulates misfolded α-synuclein uptake and NLRP3 inflammasome activation in microglia. J Exp Med 216(6):1411–1430. https://pubmed.ncbi.nlm.nih.gov/31036561. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547864/
Peng J, Stevenson FF, Doctrow SR, Andersen JK (2005) Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson disease. J Biol Chem 280(32):29194–29198
Article CAS PubMed Google Scholar
Przedborski S (2017) The two-century journey of Parkinson disease research. Nat Rev Neurosci 18(4):251–259. https://www.ncbi.nlm.nih.gov/pubmed/28303016
Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M, Onofrj M (2009) Peripheral cytokines profile in Parkinson’s disease. Brain Behav Immun 23(1):55–63
Article CAS PubMed Google Scholar
Rosivatz E, Matthews JG, McDonald NQ, Mulet X, Ho KK, Lossi N, Schmid AC, Mirabelli M, Pomeranz KM, Erneux C, Lam EW (2006) A Small-Molecule Inhibitor for Phosphatase and Tensin Homologue Deleted on Chromosome 10 (PTEN). ACS Chemical Biol 1(12):780–790. https://doi.org/10.1021/cb600352f
Roskoski Jr R (2005) Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 331(1):1–14. https://www.ncbi.nlm.nih.gov/pubmed/15845350
Roskoski Jr R (2015) Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors." Pharmacol Res 94:9–25. https://www.ncbi.nlm.nih.gov/pubmed/25662515
Saminathan H, Asaithambi A, Anantharam V, Kanthasamy AG, Kanthasamy A (2011) Environmental neurotoxic pesticide dieldrin activates a non receptor tyrosine kinase to promote PKCdelta-mediated dopaminergic apoptosis in a dopaminergic neuronal cell model. Neurotoxicology 32(5):567–577. https://www.ncbi.nlm.nih.gov/pubmed/21801747
Saminathan H, Charli A, Luo J, Panicker N, Gordon R, Hostetter JM, Jin H, Anantharam V, Kanthasamy AG, Kanthasamy A (2020) Fyn kinase mediates pro-inflammatory response in a mouse model of endotoxemia: Relevance to translational research. European J Pharmacol 881:173259. https://www.sciencedirect.com/science/article/pii/S0014299920303514
Saminathan H, Ghosh A, Zhang D, Song C, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG (2021) Fyn Kinase-Mediated PKCδ Y311 Phosphorylation Induces Dopaminergic Degeneration in Cell Culture and Animal Models: Implications for the Identification of a New Pharmacological Target for Parkinson’s Disease. Front Pharmacol 12. https://www.frontiersin.org/article/10.3389/fphar.2021.631375
Sarn N, Jaini R, Thacker S, Lee H, Dutta R, Eng C (2021) Cytoplasmic-predominant Pten increases microglial activation and synaptic pruning in a murine model with autism-like phenotype. Mol Psychiatry 26(5):1458–1471. https://doi.org/10.1038/s41380-020-0681-0
Schapira AH, Patel S (2014) Targeting Mitochondria for Neuroprotection in Parkinson Disease. JAMA Neurol 71(5):537–538. https://doi.org/10.1001/jamaneurol.2014.64
Song C, Charli A, Luo J, Riaz Z, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG (2019) Mechanistic Interplay Between Autophagy and Apoptotic Signaling in Endosulfan-Induced Dopaminergic Neurotoxicity: Relevance to the Adverse Outcome Pathway in Pesticide Neurotoxicity. Toxicol Sci 169(2):333–352. https://www.ncbi.nlm.nih.gov/pubmed/30796443
Spina Nagy G, Kawamoto EM, Bridi JC (2021) The role of PTEN signaling in synaptic function: Implications in autism spectrum disorder. Neurosci Lett 759:136015. https://www.sciencedirect.com/science/article/pii/S0304394021003931
Stojkovska I, Wagner BM, Morrison BE (2015) Parkinson's disease and enhanced inflammatory response. Experimental Biol Med (Maywood, N.J.) 240(11):1387–1395 https://pubmed.ncbi.nlm.nih.gov/25769314. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935292/
Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820
Article CAS PubMed Google Scholar
Wang L, Lu G, Shen HM (2020a) The Long and the Short of PTEN in the Regulation of Mitophagy. Front Cell Developmental Biol 8. https://www.frontiersin.org/article/10.3389/fcell.2020.00299
Wang W, Wang X, Guo H, Cai Y, Zhang Y, Li H (2020b) PTEN inhibitor VO-OHpic suppresses TSC2(-) (/) (-) MEFs proliferation by excessively inhibiting autophagy via the PTEN/PRAS40 pathway. Exp Ther Med 19(6):3565–3570
Comments (0)