Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989;3:192–5.
Article CAS PubMed Google Scholar
Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002;84:716–20.
Chan DS, Garland J, Infante A, Sanders RW, Sagi HC. Wound complications associated with bone morphogenetic protein-2 in orthopaedic trauma surgery. J Orthop Trauma. 2014;28:599–604.
Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11:471–91.
Vakhshori V, Bougioukli S, Sugiyama O, Kang HP, Tang AH, Park SH, et al. Ex vivo regional gene therapy with human adipose-derived stem cells for bone repair. Bone. 2020;138:115524.
Article CAS PubMed PubMed Central Google Scholar
Zhu M, Heydarkhan-Hagvall S, Hedrick M, Benhaim P, Zuk P. Manual isolation of adipose-derived stem cells from human lipoaspirates. J Vis Exp. 2013;79:e50585.
Collon K, Bell JA, Gallo MC, Chang SW, Bougioukli S, Sugiyama O, et al. Influence of donor age and comorbidities on transduced human adipose-derived stem cell in vitro osteogenic potential. Gene Ther. 2022;30:369–76.
Article PubMed PubMed Central Google Scholar
Alaee F, Bartholomae C, Sugiyama O, Virk MS, Drissi H, Wu Q, et al. Biodistribution of LV-TSTA transduced rat bone marrow cells used for "ex-vivo" regional gene therapy for bone repair. Curr Gene Ther. 2015;15:481–91.
Article CAS PubMed Google Scholar
Virk MS, Sugiyama O, Park SH, Gambhir SS, Adams DJ, Drissi H, et al. "Same day" ex-vivo regional gene therapy: a novel strategy to enhance bone repair. Mol Ther. 2011;19:960–8.
Article CAS PubMed PubMed Central Google Scholar
Iyer M, Wu L, Carey M, Wang Y, Smallwood A, Gambhir SS. Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci USA. 2001;98:14595–600.
Article CAS PubMed PubMed Central Google Scholar
Virk MS, Conduah A, Park SH, Liu N, Sugiyama O, Cuomo A, et al. Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone. 2008;42:921–31.
Article CAS PubMed Google Scholar
Ihn H, Kang H, Iglesias B, Sugiyama O, Tang A, Hollis R, et al. Regional gene therapy with transduced human cells: the influence of "cell dose" on bone repair. Tissue Eng Part A. 2021;27:1422–33.
Article CAS PubMed PubMed Central Google Scholar
Vakhshori V, Bougioukli S, Sugiyama O, Tang A, Yoho R, Lieberman JR. Cryopreservation of human adipose-derived stem cells for use in ex vivo regional gene therapy for bone repair. Hum Gene Ther Methods. 2018;29:269–77.
Article CAS PubMed PubMed Central Google Scholar
Toupet K, Maumus M, Peyrafitte JA, Bourin P, van Lent PL, Ferreira R, et al. Long-term detection of human adipose-derived mesenchymal stem cells after intraarticular injection in SCID mice. Arthritis Rheumatol. 2013;65:1786–94.
Schmuck EG, Koch JM, Centanni JM, Hacker TA, Braun RK, Eldridge M, et al. Biodistribution and clearance of human mesenchymal stem cells by quantitative three-dimensional cryo-imaging after intravenous infusion in a rat lung injury model. Stem Cells Transl Med. 2016;5:1668–75.
Article PubMed PubMed Central Google Scholar
Sensebe L, Fleury-Cappellesso S. Biodistribution of mesenchymal stem/stromal cells in a preclinical setting. Stem Cells Int. 2013;2013:678063.
Article PubMed PubMed Central Google Scholar
Sanchez-Diaz M, Quinones-Vico MI, Sanabria de la Torre R, Montero-Vilchez T, Sierra-Sanchez A, Molina-Leyva A, et al. Biodistribution of mesenchymal stromal cells after administration in animal models and humans: a systematic review. J Clin Med. 2021;10:2925.
Article PubMed PubMed Central Google Scholar
Berry C, Hannenhalli S, Leipzig J, Bushman FD. Selection of target sites for mobile DNA integration in the human genome. PLoS Comput Biol. 2006;2:e157.
Article PubMed PubMed Central Google Scholar
Berry CC, Gillet NA, Melamed A, Gormley N, Bangham CR, Bushman FD. Estimating abundances of retroviral insertion sites from DNA fragment length data. Bioinformatics. 2012;28:755–62.
Article CAS PubMed PubMed Central Google Scholar
Schroder ARW, Shinn P, Chen HM, Berry C, Ecker JR, Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002;110:521–9.
Article CAS PubMed Google Scholar
Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2004;2:E234.
Article PubMed PubMed Central Google Scholar
Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res. 2007;17:1186–94.
Article CAS PubMed PubMed Central Google Scholar
Wang GP, Berry CC, Malani N, Leboulch P, Fischer A, Hacein-Bey-Abina S, et al. Dynamics of gene-modified progenitor cells analyzed by tracking retroviral integration sites in a human SCID-X1 gene therapy trial. Blood. 2010;115:4356–66.
Article CAS PubMed PubMed Central Google Scholar
Sherman E, Nobles C, Berry CC, Six E, Wu Y, Dryga A, et al. INSPIIRED: a pipeline for quantitative analysis of sites of new dna integration in cellular genomes. Mol Ther Methods Clin Dev. 2017;4:39–49.
Article CAS PubMed Google Scholar
Berry CC, Nobles C, Six E, Wu Y, Malani N, Sherman E, et al. INSPIIRED: quantification and visualization tools for analyzing integration site distributions. Mol Ther Methods Clin Dev. 2017;4:17–26.
Article CAS PubMed Google Scholar
Ocwieja KE, Brady TL, Ronen K, Huegel A, Roth SL, Schaller T, et al. HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein RanBP2. PLoS Pathog. 2011;7:e1001313.
Article CAS PubMed PubMed Central Google Scholar
Gabriel R, Eckenberg R, Paruzynski A, Bartholomae CC, Nowrouzi A, Arens A, et al. Comprehensive genomic access to vector integration in clinical gene therapy. Nat Med. 2009;15:1431–6.
Article CAS PubMed Google Scholar
Bougioukli S, Sugiyama O, Alluri RK, Yoho R, Oakes DA, Lieberman JR. In vitro evaluation of a lentiviral two-step transcriptional amplification system using GAL4FF transactivator for gene therapy applications in bone repair. Gene Ther. 2018;25:260–8.
Article CAS PubMed Google Scholar
Bougioukli S, Evans CH, Alluri RK, Ghivizzani SC, Lieberman JR. Gene therapy to enhance bone and cartilage repair in orthopaedic surgery. Curr Gene Ther. 2018;18:154–70.
Article CAS PubMed Google Scholar
Alluri R, Jakus A, Bougioukli S, Pannell W, Sugiyama O, Tang A, et al. 3D printed hyperelastic "bone" scaffolds and regional gene therapy: a novel approach to bone healing. J Biomed Mater Res A. 2018;106:1104–10.
Article CAS PubMed PubMed Central Google Scholar
Alluri R, Song X, Bougioukli S, Pannell W, Vakhshori V, Sugiyama O, et al. Regional gene therapy with 3D printed scaffolds to heal critical sized bone defects in a rat model. J Biomed Mater Res A. 2019;107:2174–82.
Article CAS PubMed PubMed Central Google Scholar
Gregson RL, Davey MJ, Prentice DE. Bronchus-associated lymphoid tissue (BALT) in the laboratory-bred and wild rat, Rattus norvegicus. Lab Anim. 1979;13:239–43.
Article CAS PubMed Google Scholar
Randall TD. Bronchus-associated lymphoid tissue (BALT) structure and function. Adv Immunol. 2010;107:187–241.
Article CAS PubMed PubMed Central Google Scholar
Binley K, Widdowson PS, Kelleher M, de Belin J, Loader J, Ferrige G, et al. Safety and biodistribution of an equine infectious anemia virus-based gene therapy, RetinoStat((R)), for age-related macular degeneration. Hum Gene Ther. 2012;23:980–91.
Article CAS PubMed Google Scholar
Peng KW, Pham L, Ye H, Zufferey R, Trono D, Cosset FL, et al. Organ distribution of gene expression after intravenous infusion of targeted and untargeted lentiviral vectors. Gene Ther. 2001;8:1456–63.
Comments (0)