Biodistribution of lentiviral transduced adipose-derived stem cells for “ex-vivo” regional gene therapy for bone repair

Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989;3:192–5.

Article  CAS  PubMed  Google Scholar 

Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002;84:716–20.

Article  PubMed  Google Scholar 

Chan DS, Garland J, Infante A, Sanders RW, Sagi HC. Wound complications associated with bone morphogenetic protein-2 in orthopaedic trauma surgery. J Orthop Trauma. 2014;28:599–604.

Article  PubMed  Google Scholar 

Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11:471–91.

Article  PubMed  Google Scholar 

Vakhshori V, Bougioukli S, Sugiyama O, Kang HP, Tang AH, Park SH, et al. Ex vivo regional gene therapy with human adipose-derived stem cells for bone repair. Bone. 2020;138:115524.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu M, Heydarkhan-Hagvall S, Hedrick M, Benhaim P, Zuk P. Manual isolation of adipose-derived stem cells from human lipoaspirates. J Vis Exp. 2013;79:e50585.

Google Scholar 

Collon K, Bell JA, Gallo MC, Chang SW, Bougioukli S, Sugiyama O, et al. Influence of donor age and comorbidities on transduced human adipose-derived stem cell in vitro osteogenic potential. Gene Ther. 2022;30:369–76.

Article  PubMed  PubMed Central  Google Scholar 

Alaee F, Bartholomae C, Sugiyama O, Virk MS, Drissi H, Wu Q, et al. Biodistribution of LV-TSTA transduced rat bone marrow cells used for "ex-vivo" regional gene therapy for bone repair. Curr Gene Ther. 2015;15:481–91.

Article  CAS  PubMed  Google Scholar 

Virk MS, Sugiyama O, Park SH, Gambhir SS, Adams DJ, Drissi H, et al. "Same day" ex-vivo regional gene therapy: a novel strategy to enhance bone repair. Mol Ther. 2011;19:960–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iyer M, Wu L, Carey M, Wang Y, Smallwood A, Gambhir SS. Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci USA. 2001;98:14595–600.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Virk MS, Conduah A, Park SH, Liu N, Sugiyama O, Cuomo A, et al. Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone. 2008;42:921–31.

Article  CAS  PubMed  Google Scholar 

Ihn H, Kang H, Iglesias B, Sugiyama O, Tang A, Hollis R, et al. Regional gene therapy with transduced human cells: the influence of "cell dose" on bone repair. Tissue Eng Part A. 2021;27:1422–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vakhshori V, Bougioukli S, Sugiyama O, Tang A, Yoho R, Lieberman JR. Cryopreservation of human adipose-derived stem cells for use in ex vivo regional gene therapy for bone repair. Hum Gene Ther Methods. 2018;29:269–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toupet K, Maumus M, Peyrafitte JA, Bourin P, van Lent PL, Ferreira R, et al. Long-term detection of human adipose-derived mesenchymal stem cells after intraarticular injection in SCID mice. Arthritis Rheumatol. 2013;65:1786–94.

Article  CAS  Google Scholar 

Schmuck EG, Koch JM, Centanni JM, Hacker TA, Braun RK, Eldridge M, et al. Biodistribution and clearance of human mesenchymal stem cells by quantitative three-dimensional cryo-imaging after intravenous infusion in a rat lung injury model. Stem Cells Transl Med. 2016;5:1668–75.

Article  PubMed  PubMed Central  Google Scholar 

Sensebe L, Fleury-Cappellesso S. Biodistribution of mesenchymal stem/stromal cells in a preclinical setting. Stem Cells Int. 2013;2013:678063.

Article  PubMed  PubMed Central  Google Scholar 

Sanchez-Diaz M, Quinones-Vico MI, Sanabria de la Torre R, Montero-Vilchez T, Sierra-Sanchez A, Molina-Leyva A, et al. Biodistribution of mesenchymal stromal cells after administration in animal models and humans: a systematic review. J Clin Med. 2021;10:2925.

Article  PubMed  PubMed Central  Google Scholar 

Berry C, Hannenhalli S, Leipzig J, Bushman FD. Selection of target sites for mobile DNA integration in the human genome. PLoS Comput Biol. 2006;2:e157.

Article  PubMed  PubMed Central  Google Scholar 

Berry CC, Gillet NA, Melamed A, Gormley N, Bangham CR, Bushman FD. Estimating abundances of retroviral insertion sites from DNA fragment length data. Bioinformatics. 2012;28:755–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schroder ARW, Shinn P, Chen HM, Berry C, Ecker JR, Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002;110:521–9.

Article  CAS  PubMed  Google Scholar 

Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2004;2:E234.

Article  PubMed  PubMed Central  Google Scholar 

Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res. 2007;17:1186–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang GP, Berry CC, Malani N, Leboulch P, Fischer A, Hacein-Bey-Abina S, et al. Dynamics of gene-modified progenitor cells analyzed by tracking retroviral integration sites in a human SCID-X1 gene therapy trial. Blood. 2010;115:4356–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sherman E, Nobles C, Berry CC, Six E, Wu Y, Dryga A, et al. INSPIIRED: a pipeline for quantitative analysis of sites of new dna integration in cellular genomes. Mol Ther Methods Clin Dev. 2017;4:39–49.

Article  CAS  PubMed  Google Scholar 

Berry CC, Nobles C, Six E, Wu Y, Malani N, Sherman E, et al. INSPIIRED: quantification and visualization tools for analyzing integration site distributions. Mol Ther Methods Clin Dev. 2017;4:17–26.

Article  CAS  PubMed  Google Scholar 

Ocwieja KE, Brady TL, Ronen K, Huegel A, Roth SL, Schaller T, et al. HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein RanBP2. PLoS Pathog. 2011;7:e1001313.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gabriel R, Eckenberg R, Paruzynski A, Bartholomae CC, Nowrouzi A, Arens A, et al. Comprehensive genomic access to vector integration in clinical gene therapy. Nat Med. 2009;15:1431–6.

Article  CAS  PubMed  Google Scholar 

Bougioukli S, Sugiyama O, Alluri RK, Yoho R, Oakes DA, Lieberman JR. In vitro evaluation of a lentiviral two-step transcriptional amplification system using GAL4FF transactivator for gene therapy applications in bone repair. Gene Ther. 2018;25:260–8.

Article  CAS  PubMed  Google Scholar 

Bougioukli S, Evans CH, Alluri RK, Ghivizzani SC, Lieberman JR. Gene therapy to enhance bone and cartilage repair in orthopaedic surgery. Curr Gene Ther. 2018;18:154–70.

Article  CAS  PubMed  Google Scholar 

Alluri R, Jakus A, Bougioukli S, Pannell W, Sugiyama O, Tang A, et al. 3D printed hyperelastic "bone" scaffolds and regional gene therapy: a novel approach to bone healing. J Biomed Mater Res A. 2018;106:1104–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alluri R, Song X, Bougioukli S, Pannell W, Vakhshori V, Sugiyama O, et al. Regional gene therapy with 3D printed scaffolds to heal critical sized bone defects in a rat model. J Biomed Mater Res A. 2019;107:2174–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gregson RL, Davey MJ, Prentice DE. Bronchus-associated lymphoid tissue (BALT) in the laboratory-bred and wild rat, Rattus norvegicus. Lab Anim. 1979;13:239–43.

Article  CAS  PubMed  Google Scholar 

Randall TD. Bronchus-associated lymphoid tissue (BALT) structure and function. Adv Immunol. 2010;107:187–241.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Binley K, Widdowson PS, Kelleher M, de Belin J, Loader J, Ferrige G, et al. Safety and biodistribution of an equine infectious anemia virus-based gene therapy, RetinoStat((R)), for age-related macular degeneration. Hum Gene Ther. 2012;23:980–91.

Article  CAS  PubMed  Google Scholar 

Peng KW, Pham L, Ye H, Zufferey R, Trono D, Cosset FL, et al. Organ distribution of gene expression after intravenous infusion of targeted and untargeted lentiviral vectors. Gene Ther. 2001;8:1456–63.

Article  CAS 

Comments (0)

No login
gif