New high-throughput screening method for Chinese hamster ovary cell lines expressing low reduced monoclonal antibody levels: application of a system controlling the gas phase over cell lysates in miniature bioreactors and facilitating multiple sample setup

Chevallier V, Andersen MR, Malphettes L (2020) Oxidative stress-alleviating strategies to improve recombinant protein production in CHO cells. Biotechnol Bioeng 117:1172–1186. https://doi.org/10.1002/bit.27247

Article  CAS  PubMed  Google Scholar 

Chung WK, Russell B, Yang Y, Handlogten M, Hudak S, Cao M, Wang J, Robbins D, Ahuja S, Zhu M (2017) Effects of antibody disulfide bond reduction on purification process performance and final drug substance stability. Biotechnol Bioeng 114:1264–1274. https://doi.org/10.1002/bit.26265

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cura AJ, Xu X, Egan S, Aron K, Jenkins L, Hageman T, Huang Y, Chollangi S, Borys M, Ghose S, Li ZJ (2020) Metabolic understanding of disulfide reduction during monoclonal antibody production. Appl Microbiol Biotechnol 104:9655–9669. https://doi.org/10.1007/s00253-020-10916-1

Article  CAS  PubMed  Google Scholar 

Derfus GE, Dizon-Maspat J, Broddrick JT, Velayo AC, Toschi JD, Santuray RT, Hsu SK, Winter CM, Krishnan R, Amanullah A (2014) Red colored IgG4 caused by vitamin B12 from cell culture media combined with disulfide reduction at harvest. mAbs 6:679–688. https://doi.org/10.4161/mabs.28257

Article  PubMed  PubMed Central  Google Scholar 

Du C, Huang Y, Borwankar A, Tan Z, Cura A, Yee JC, Singh N, Ludwig R, Borys M, Ghose S, Mussa N, Li ZJ (2018) Using hydrogen peroxide to prevent antibody disulfide bond reduction during manufacturing process. mAbs 10:500–510. https://doi.org/10.1080/19420862.2018.1424609

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao Y, Ray S, Dai S, Ivanov AR, Abu-Absi NR, Lewis AM, Huang Z, Xing Z, Borys MC, Li ZJ, Karger BL (2016) Combined metabolomics and proteomics reveals hypoxia as a cause of lower productivity on scale-up to a 5000-liter CHO bioprocess. Biotechnol J 11:1190–1200. https://doi.org/10.1002/biot.201600030

Article  CAS  PubMed  Google Scholar 

Gromer S, Urig S, Becker K (2004) The thioredoxin system–from science to clinic. Med Res Rev 24:40–89. https://doi.org/10.1002/med.10051

Article  CAS  PubMed  Google Scholar 

Handlogten MW, Zhu M, Ahuja S (2017) Glutathione and thioredoxin systems contribute to recombinant monoclonal antibody interchain disulfide bond reduction during bioprocessing. Biotechnol Bioeng 114:1469–1477. https://doi.org/10.1002/bit.26278

Article  CAS  PubMed  Google Scholar 

Handlogten MW, Wang J, Ahuja S (2020) Online control of cell culture redox potential prevents antibody interchain disulfide bond reduction. Biotechnol Bioeng 117:1329–1336. https://doi.org/10.1002/bit.27281

Article  CAS  PubMed  Google Scholar 

Henry MN, MacDonald MA, Orellana CA, Gray PP, Gillard M, Baker K, Nielsen LK, Marcellin E, Mahler S, Martínez VS (2020) Attenuating apoptosis in chinese hamster ovary cells for improved biopharmaceutical production. Biotechnol Bioeng 117:1187–1203. https://doi.org/10.1002/bit.27269

Article  CAS  PubMed  Google Scholar 

Hutterer KM, Hong RW, Lull J, Zhao X, Wang T, Pei R, Le ME, Borisov O, Piper R, Liu YD, Petty K, Apostol I, Flynn GC (2013) Monoclonal antibody disulfide reduction during manufacturing: untangling process effects from product effects. mAbs 5:608–613. https://doi.org/10.4161/mabs.24725

Article  PubMed  PubMed Central  Google Scholar 

Kao FT, Puck TT (1968) Genetics of somatic mammalian cells, VII. Induction and isolation of nutritional mutants in chinese hamster cells. Proc Natl Acad Sci USA 60:1275–1281. https://doi.org/10.1073/pnas.60.4.1275

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kao YH, Hewitt DP, Trexler-Schmidt M, Laird MW (2010) Mechanism of antibody reduction in cell culture production processes. Biotechnol Bioeng 107:622–632. https://doi.org/10.1002/bit.22848

Article  CAS  PubMed  Google Scholar 

Kaplon H, Muralidharan M, Schneider Z, Reichert JM (2020) Antibodies to watch in 2020. mAbs 12:1703531. https://doi.org/10.1080/19420862.2019.1703531

Article  CAS  PubMed  Google Scholar 

Koterba KL, Borgschulte T, Laird MW (2012) Thioredoxin 1 is responsible for antibody disulfide reduction in CHO cell culture. J Biotechnol 157:261–267. https://doi.org/10.1016/j.jbiotec.2011.11.009

Article  CAS  PubMed  Google Scholar 

Kunert R, Reinhart D (2016) Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol 100:3451–3461. https://doi.org/10.1007/s00253-016-7388-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lalonde ME, Durocher Y (2017) Therapeutic glycoprotein production in mammalian cells. J Biotechnol 251:128–140. https://doi.org/10.1016/j.jbiotec.2017.04.028

Article  CAS  PubMed  Google Scholar 

Liu H, Nowak C, Shao M, Ponniah G, Neill A (2016) Impact of cell culture on recombinant monoclonal antibody product heterogeneity. Biotechnol Prog 32:1103–1112. https://doi.org/10.1002/btpr.2327

Article  CAS  PubMed  Google Scholar 

Mullan B, Dravis B, Lim A, Clarke A, Janes S, Lambooy P, Olson D, O’Riordan T, Ricart B, Tulloch AG (2011) Disulphide bond reduction of a therapeutic monoclonal antibody during cell culture manufacturing operations. BMC Proc 5:P110. https://doi.org/10.1186/1753-6561-5-S8-P110

Article  PubMed  PubMed Central  Google Scholar 

Mun M, Khoo S, Do Minh A, Dvornicky J, Trexler-Schmidt M, Kao YH, Laird MW (2015) Air sparging for prevention of antibody disulfide bond reduction in harvested CHO cell culture fluid. Biotechnol Bioeng 112:734–742. https://doi.org/10.1002/bit.25495

Article  CAS  PubMed  Google Scholar 

Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9:767–774. https://doi.org/10.1038/nrd3229

Article  CAS  PubMed  Google Scholar 

O’Flaherty R, Bergin A, Flampouri E, Mota LM, Obaidi I, Quigley A, Xie Y, Butler M (2020) Mammalian cell culture for production of recombinant proteins: a review of the critical steps in their biomanufacturing. Biotechnol Adv 1:107552. https://doi.org/10.1016/j.biotechadv.2020.107552

Article  CAS  Google Scholar 

O’Mara B, Gao ZH, Kuruganti M, Mallett R, Nayar G, Smith L, Meyer JD, Therriault J, Miller C, Cisney J, Fann J (2019) Impact of depth filtration on disulfide bond reduction during downstream processing of monoclonal antibodies from CHO cell cultures. Biotechnol Bioeng 116:1669–1683. https://doi.org/10.1002/bit.26964

Article  CAS  PubMed  Google Scholar 

Park SY, Egan S, Cura AJ, Aron KL, Xu X, Zheng M, Borys M, Ghose S, Li Z, Lee K (2021) Untargeted proteomics reveals upregulation of stress response pathways during CHO-based monoclonal antibody manufacturing process leading to disulfide bond reduction. mAbs 13:1963094. https://doi.org/10.1080/19420862.2021.1963094

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren T, Tan Z, Ehamparanathan V, Lewandowski A, Ghose S, Li ZJ (2021) Antibody disulfide bond reduction and recovery during biopharmaceutical process development – a review. Biotechnol Bioeng 118:2829–2844. https://doi.org/10.1002/bit.27790

Article  CAS  PubMed  Google Scholar 

Ritacco F, Wu Y, Khetan A (2018) Cell culture media for recombinant protein expression in chinese hamster ovary (CHO) cells: history, key components, and optimization strategies. Biotechnol Prog 34:1407–1426. https://doi.org/10.1002/btpr.2706

Article  CAS  PubMed  Google Scholar 

Shukla AA, Thömmes J (2010) Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol 28:253–261. https://doi.org/10.1016/j.tibtech.2010.02.001

Article  CAS  PubMed  Google Scholar 

Templeton N, Dean J, Reddy P, Young JD (2013) Peak antibody production is associated with increased oxidative metabolism in an industrially relevant fed-batch CHO cell culture. Biotechnol Bioeng 110:2013–2024. https://doi.org/10.1002/bit.24858

Article  CAS  PubMed  Google Scholar 

Trexler-Schmidt M, Sargis S, Chiu J, Sze-Khoo S, Mun M, Kao YH, Laird MW (2010) Identification and prevention of antibody disulfide bond reduction during cell culture manufacturing. Biotechnol Bioeng 106:452–461. https://doi.org/10.1002/bit.22699

Article  CAS  PubMed  Google Scholar 

Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36:1136–1145. https://doi.org/10.1038/nbt.4305

Article  CAS  PubMed  Google Scholar 

Xiao W, Wang RS, Handy DE, Loscalzo J (2018) NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxid Redox Signal 28:251–272. https://doi.org/10.1089/ars.2017.7216

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou JX, Tressel T, Yang X, Seewoester T (2008) Implementation of advanced technologies in commercial monoclonal antibody production. Biotechnol J 3:1185–1200. https://doi.org/10.1002/biot.200800117

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif