Safety and efficacy of cataract surgery performed with a low-energy femtosecond laser compared with conventional phacoemulsification in Chinese patients: a randomized clinical trial

Maggon R, Bhattacharjee R, Shankar S, Kar RC, Sharma V, Roy S. Comparative analysis of endothelial cell loss following phacoemulsification in pupils of different sizes. Indian J Ophthalmol. 2017;65(12):1431–5.

Article  PubMed  PubMed Central  Google Scholar 

Hwang HB, Lyu B, Yim HB, Lee NY. Endothelial cell loss after phacoemulsification according to different anterior chamber depths. J Ophthalmol. 2015;2015:210716.

PubMed  PubMed Central  Google Scholar 

Yu AY, Ni LY, Wang QM, Huang F, Zhu SQ, Zheng LY, et al. Preliminary clinical investigation of cataract surgery with a noncontact femtosecond laser system. Lasers Surg Med. 2015;47(9):698–703.

Article  PubMed  PubMed Central  Google Scholar 

Bascaran L, Alberdi T, Martinez-Soroa I, Sarasqueta C, Mendicute J. Differences in energy and corneal endothelium between femtosecond laser-assisted and conventional cataract surgeries: prospective, intraindividual, randomized controlled trial. Int J Ophthalmol. 2018;11(8):1308–16.

PubMed  PubMed Central  Google Scholar 

Conrad-Hengerer I, Hengerer FH, Schultz T, Dick HB. Effect of femtosecond laser fragmentation of the nucleus with different softening grid sizes on effective phaco time in cataract surgery. J Cataract Refract Surg. 2012;38(11):1888–94.

Article  PubMed  Google Scholar 

Mayer WJ, Klaproth OK, Hengerer FH, Kohnen T. Impact of crystalline lens opacification on effective phacoemulsification time in femtosecond laser-assisted cataract surgery. Am J Ophthalmol. 2014;157(2):426–32.e1.

Article  CAS  PubMed  Google Scholar 

He L, Sheehy K, Culbertson W. Femtosecond laser-assisted cataract surgery. Curr Opin Ophthalmol. 2011;22(1):43–52.

Article  PubMed  Google Scholar 

Roberts TV, Lawless M, Chan CC, Jacobs M, Ng D, Bali SJ, et al. Femtosecond laser cataract surgery: technology and clinical practice. Clin Exp Ophthalmol. 2013;41(2):180–6.

Article  PubMed  Google Scholar 

Dick HB, Gerste RD. Plea for femtosecond laser pre-treatment and cataract surgery in the same room. J Cataract Refract Surg. 2014;40(3):499–500.

Article  PubMed  Google Scholar 

Abell RG, Darian-Smith E, Kan JB, Allen PL, Ewe SY, Vote BJ. Femtosecond laser-assisted cataract surgery versus standard phacoemulsification cataract surgery: outcomes and safety in more than 4000 cases at a single center. J Cataract Refract Surg. 2015;41(1):47–52.

Article  PubMed  Google Scholar 

Conrad-Hengerer I, Al Juburi M, Schultz T, Hengerer FH, Dick HB. Corneal endothelial cell loss and corneal thickness in conventional compared with femtosecond laser-assisted cataract surgery: three-month follow-up. J Cataract Refract Surg. 2013;39(9):1307–13.

Article  PubMed  Google Scholar 

Ewe SY, Abell RG, Oakley CL, Lim CH, Allen PL, McPherson ZE, et al. A comparative cohort study of visual outcomes in femtosecond laser-assisted versus phacoemulsification cataract surgery. Ophthalmology. 2016;123(1):178–82.

Article  PubMed  Google Scholar 

Wang J, Su F, Wang Y, Chen Y, Chen Q, Li F. Intra and post-operative complications observed with femtosecond laser-assisted cataract surgery versus conventional phacoemulsification surgery: a systematic review and meta-analysis. BMC Ophthalmol. 2019;19(1):177.

Article  PubMed  PubMed Central  Google Scholar 

Pajic B, Cvejic Z, Pajic-Eggspuehler B. Cataract surgery performed by high frequency LDV Z8 femtosecond laser: safety, efficacy, and its physical properties. Sensors (Basel). 2017;17(6):1429.

Article  PubMed  Google Scholar 

Liu YC, Setiawan M, Chin JY, Wu B, Ong HS, Lamoureux E, et al. Randomized controlled trial comparing 1-year outcomes of low-energy femtosecond laser-assisted cataract surgery versus conventional phacoemulsification. Front Med (Lausanne). 2021;8:811093.

Article  PubMed  Google Scholar 

Lin HY, Chuang YJ, Lin PJ. Surgical outcomes with high and low pulse energy femtosecond laser systems for cataract surgery. Sci Rep. 2021;11(1):9525.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwarzenbacher L, Schartmüller D, Leydolt C, Menapace R. Prostaglandin release after low-energy femtosecond laser-assisted cataract surgery without anti-inflammatory drug premedication. Am J Ophthalmol. 2022;238:103–9.

Article  CAS  PubMed  Google Scholar 

Toto L, Calienno R, Curcio C, Mattei PA, Mastropasqua A, Lanzini M, et al. Induced inflammation and apoptosis in femtosecond laser-assisted capsulotomies and manual capsulorhexes: an immunohistochemical study. J Refract Surg. 2015;31(5):290–4.

Article  PubMed  Google Scholar 

Williams GP, George BL, Wong YR, Seah XY, Ang HP, Loke MK, et al. The effects of a low-energy, high frequency liquid optic interface femtosecond laser system on lens capsulotomy. Sci Rep. 2016;6:24352.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Latz C, Asshauer T, Rathjen C, Mirshahi A. Femtosecond-laser assisted surgery of the eye: overview and impact of the low-energy concept. Micromachines (Basel). 2021;12(2):122.

Article  PubMed  Google Scholar 

Mastropasqua L, Toto L, Mastropasqua A, Vecchiarino L, Mastropasqua R, Pedrotti E, et al. Femtosecond laser versus manual clear corneal incision in cataract surgery. J Refract Surg. 2014;30(1):27–33.

Article  PubMed  Google Scholar 

Takács AI, Kovacs I, Miháltz K, Filkorn T, Knorz MC, Nagy ZZ. Central corneal volume and endothelial cell count following femtosecond laser-assisted refractive cataract surgery compared to conventional phacoemulsification. J Refract Surg. 2012;28(6):387–91.

Article  PubMed  Google Scholar 

Abell RG, Kerr NM, Vote BJ. Femtosecond laser-assisted cataract surgery compared with conventional cataract surgery. Clin Exp Ophthalmol. 2013;41(5):455–62.

Article  PubMed  Google Scholar 

Kránitz K, Takacs A, Miháltz K, Kovács I, Knorz MC, Nagy ZZ. Femtosecond laser capsulotomy and manual continuous curvilinear capsulorrhexis parameters and their effects on intraocular lens centration. J Refract Surg. 2011;27(8):558–63.

Article  PubMed  Google Scholar 

Palanker DV, Blumenkranz MS, Andersen D, Wiltberger M, Marcellino G, Gooding P, et al. Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography. Sci Transl Med. 2010;2(58):58ra85.

Article  PubMed  Google Scholar 

Reddy KP, Kandulla J, Auffarth GU. Effectiveness and safety of femtosecond laser-assisted lens fragmentation and anterior capsulotomy versus the manual technique in cataract surgery. J Cataract Refract Surg. 2013;39(9):1297–306.

Article  PubMed  Google Scholar 

Chen M, Chen M. Comparison of CDE data in phacoemulsification between an open hospital-based ambulatory surgical center and a free-standing ambulatory surgical center. Clin Ophthalmol. 2010;4:1287–9.

Article  PubMed  PubMed Central  Google Scholar 

Perez JM, Ibanez MBB IV, Valero SO. Association of cumulative dissipated energy and postoperative foveal thickness among patients with age related cataract who underwent uncomplicated phacoemulsification. Philipp J Ophthalmol. 2016;41:50–5.

Google Scholar 

Chen H, Lin H, Chen W, Zhang B, Xiang W, Li J, et al. Femtosecond laser combined with non-chopping rotation phacoemulsification technique for soft-nucleus cataract surgery: a prospective study. Sci Rep. 2016;6:18684.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conrad-Hengerer I, Hengerer FH, Schultz T, Dick HB. Effect of femtosecond laser fragmentation on effective phacoemulsification time in cataract surgery. J Refract Surg. 2012;28(12):879–83.

Article  PubMed  Google Scholar 

Mayer WJ, Klaproth OK, Ostovic M, Terfort A, Vavaleskou T, Hengerer FH, et al. Cell death and ultrastructural morphology of femtosecond laser-assisted anterior capsulotomy. Invest Ophthalmol Vis Sci. 2014;55(2):893–8.

Article  PubMed  Google Scholar 

Pajic B, Vastardis I, Gatzioufas Z, Pajic-Eggspuehler B. First experience with the new high-frequency femtosecond laser system (LDV Z8) for cataract surgery. Clin Ophthalmol. 2014;8:2485–9.

Article  PubMed  PubMed Central  Google Scholar 

Popovic M, Campos-Möller X, Schlenker MB, Ahmed II. Efficacy and safety of femtosecond laser-assisted cataract surgery compared with manual cataract surgery: a meta-analysis of 14567 eyes. Ophthalmology. 2016;123(10):2113–26.

Article  PubMed  Google Scholar 

Riau AK, Liu YC, Lwin NC, Ang HP, Tan NY, Yam GH, et al. Comparative study of nJ- and μJ-energy level femtosecond lasers: evaluation of flap adhesion strength, stromal bed quality, and tissue responses. Invest Ophthalmol Vis Sci. 2014;55(5):3186–94.

Article  PubMed  Google Scholar 

Budiman B. Comparison of endothelial cell density, morphological changes and central corneal thickness after phacoemulsification between diabetic and non-diabetic patients. Open Ophthalmol J. 2020;14(1):15–20.

Article  CAS  Google Scholar 

Abell RG, Kerr NM, Howie AR, Mustaffa Kamal MA, Allen PL, Vote BJ. Effect of femtosecond laser-assisted cataract surgery on the corneal endothelium. J Cataract Refract Surg. 2014;40(11):1777–83.

Article  PubMed  Google Scholar 

Vasavada VA, Vasavada S, Vasavada AR, Vasavada V, Srivastava S. Comparative evaluation of femtosecond laser-assisted cataract surgery and conventional phacoemulsification in eyes with a shallow anterior chamber. J Cataract Refract Surg. 2019;45(5):547–52.

Article  PubMed  Google Scholar 

Walkow T, Anders N, Klebe S. Endothelial cell loss after phacoemulsification: relation to preoperative and intraoperative parameters. J Cataract Refract Surg. 2000;26(5):727–32.

Article  CAS  PubMed 

Comments (0)

No login
gif