Association between axial elongation and corneal topography in children undergoing orthokeratology with different back optic zone diameters

Huang J, Wen D, Wang Q, McAlinden C, Flitcroft I, Chen H, et al. Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis. Ophthalmology. 2016;123(4):697–708.

Article  PubMed  Google Scholar 

Chen C, Cheung SW, Cho P. Myopia control using toric orthokeratology (TO-SEE study). Invest Ophthalmol Vis Sci. 2013;54(10):6510–7.

Article  PubMed  Google Scholar 

Cho P, Cheung SW. Retardation of myopia in orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci. 2012;53(11):7077–85.

Article  PubMed  Google Scholar 

Charm J, Cho P. High myopia-partial reduction ortho-k: a 2-year randomized study. Optom Vis Sci. 2013;90(6):530–9.

Article  PubMed  Google Scholar 

Zhu MJ, Feng HY, He XG, Zou HD, Zhu JF. The control effect of orthokeratology on axial length elongation in Chinese children with myopia. BMC Ophthalmol. 2014;14:141.

Article  PubMed  PubMed Central  Google Scholar 

Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutierrez-Ortega R. Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes. Invest Ophthalmol Vis Sci. 2012;53(8):5060–5.

Article  PubMed  Google Scholar 

Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci. 2012;53(7):3913–9.

Article  PubMed  Google Scholar 

Walline JJ, Jones LA, Sinnott LT. Corneal reshaping and myopia progression. Br J Ophthalmol. 2009;93(9):1181–5.

Article  PubMed  CAS  Google Scholar 

Mountford J, Ruston D, Dave T. Orthokeratology: principles and practice. Oxford: Butterworth-Heinemann; 2004.

Google Scholar 

Maseedupally V, Gifford P, Lum E, Swarbrick H. Central and paracentral corneal curvature changes during orthokeratology. Optom Vis Sci. 2013;90(11):1249–58.

Article  PubMed  Google Scholar 

Queirós A, González-Méijome JM, Jorge J, Villa-Collar C, Gutiérrez AR. Peripheral refraction in myopic patients after orthokeratology. Optom Vis Sci. 2010;87(5):323–9.

Article  PubMed  Google Scholar 

Kang P, Swarbrick H. Peripheral refraction in myopic children wearing orthokeratology and gas-permeable lenses. Optom Vis Sci. 2011;88(4):476–82.

Article  PubMed  Google Scholar 

Ticak A, Walline JJ. Peripheral optics with bifocal soft and corneal reshaping contact lenses. Optom Vis Sci. 2013;90(1):3–8.

Article  PubMed  PubMed Central  Google Scholar 

Smith EL 3rd, Campbell MC, Irving E. Does peripheral retinal input explain the promising myopia control effects of corneal reshaping therapy (CRT or ortho-K) & multifocal soft contact lenses? Ophthalmic Physiol Opt. 2013;33(3):379–84.

Article  PubMed  PubMed Central  Google Scholar 

Zhong Y, Chen Z, Xue F, Zhou J, Niu L, Zhou X. Corneal power change is predictive of myopia progression in orthokeratology. Optom Vis Sci. 2014;91(4):404–11.

Article  PubMed  Google Scholar 

Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutiérrez-Ortega R. Short-term and long-term changes in corneal power are not correlated with axial elongation of the eye induced by orthokeratology in children. Eye Contact Lens. 2018;44(4):260–7.

Article  PubMed  Google Scholar 

Zhong Y, Chen Z, Xue F, Miao H, Zhou X. Central and peripheral corneal power change in myopic orthokeratology and its relationship with 2-year axial length change. Invest Ophthalmol Vis Sci. 2015;56(8):4514–9.

Article  PubMed  Google Scholar 

Hu Y, Wen C, Li Z, Zhao W, Ding X, Yang X. Areal summed corneal power shift is an important determinant for axial length elongation in myopic children treated with overnight orthokeratology. Br J Ophthalmol. 2019;103(11):1571–5.

Article  PubMed  Google Scholar 

Yang X, Bi H, Li L, Li S, Chen S, Zhang B, et al. The effect of relative corneal refractive power shift distribution on axial length growth in myopic children undergoing orthokeratology treatment. Curr Eye Res. 2021;46(5):657–65.

Article  PubMed  CAS  Google Scholar 

Zhang Z, Chen Z, Chen Z, Zhou J, Zeng L, Xue F, et al. Change in corneal power distribution in orthokeratology: a predictor for the change in axial length. Transl Vis Sci Technol. 2022;11(2):18.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lee EJ, Lim DH, Chung TY, Hyun J, Han J. Association of axial length growth and topographic change in orthokeratology. Eye Contact Lens. 2018;44(5):292–8.

Article  PubMed  Google Scholar 

Li N, Lin W, Zhang K, Li B, Su Q, Du B, et al. The effect of back optic zone diameter on relative corneal refractive power distribution and corneal higher-order aberrations in orthokeratology. Cont Lens Anterior Eye. 2023;46(1):101755.

Article  PubMed  Google Scholar 

Guo B, Cheung SW, Kojima R, Cho P. Variation of Orthokeratology Lens Treatment Zone (VOLTZ) Study: a 2-year randomised clinical trial. Ophthalmic Physiol Opt. 2023;43(6):1449–61.

Article  PubMed  Google Scholar 

Chia A, Chua WH, Cheung YB, Wong WL, Lingham A, Fong A, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2). Ophthalmology. 2012;119(2):347–54.

Article  PubMed  Google Scholar 

Lau JK, Vincent SJ, Cheung SW, Cho P. Higher-order aberrations and axial elongation in myopic children treated with orthokeratology. Invest Ophthalmol Vis Sci. 2020;61(2):22.

Article  PubMed  PubMed Central  Google Scholar 

Hiraoka T, Kakita T, Okamoto F, Oshika T. Influence of ocular wavefront aberrations on axial length elongation in myopic children treated with overnight orthokeratology. Ophthalmology. 2015;122(1):93–100.

Article  PubMed  Google Scholar 

Tan Q, Ng AL, Cheng GP, Woo VC, Cho P. Combined 0.01% atropine with orthokeratology in childhood myopia control (AOK) study: a 2-year randomized clinical trial. Cont Lens Anterior Eye. 2023;46(1): 101723.

Article  PubMed  Google Scholar 

Guo B, Cheung SW, Kojima R, Cho P. One-year results of the Variation of Orthokeratology Lens Treatment Zone (VOLTZ) Study: a prospective randomised clinical trial. Ophthalmic Physiol Opt. 2021;41(4):702–14.

Article  PubMed  PubMed Central  Google Scholar 

Tan Q, Cho P, Ng ALK, Cheng GPM, Woo VCP, Vincent SJ. Retinal image quality in myopic children undergoing orthokeratology alone or combined with 0.01% atropine. Eye Vis (Lond). 2023;10(1):21.

Article  Google Scholar 

Klein SA, Mandell RB. Shape and refractive powers in corneal topography. Invest Ophthalmol Vis Sci. 1995;36(10):2096–109.

PubMed  CAS  Google Scholar 

Swarbrick HA. Orthokeratology review and update. Clin Exp Optom. 2006;89(3):124–43.

Article  PubMed  Google Scholar 

Queirós A, Lopes-Ferreira D, Yeoh B, Issacs S, Amorim-De-Sousa A, Villa-Collar C, et al. Refractive, biometric and corneal topographic parameter changes during 12 months of orthokeratology. Clin Exp Optom. 2020;103(4):454–62.

Article  PubMed  Google Scholar 

Rosser DA, Cousens SN, Murdoch IE, Fitzke FW, Laidlaw DA. How sensitive to clinical change are ETDRS logMAR visual acuity measurements? Invest Ophthalmol Vis Sci. 2003;44(8):3278–81.

Article  PubMed  Google Scholar 

Guo B, Cho P, Cheung SW, Kojima R, Vincent S. Optical changes and association with axial elongation in children wearing orthokeratology lenses of different back optic zone diameter. Eye Vis (Lond). 2023;10(1):25.

Article  Google Scholar 

Marcotte-Collard R, Ouzzani M, Simard P, Michaud L, Hanssens J-M. The Montreal experience: impact of different orthokeratology lens designs on corneal treatment zone characteristics. Appl Sci. 2024;14(10):4067.

Article  CAS 

Comments (0)

No login
gif