Improved spectral resolution of [13C,1H]-HSQC spectra of aromatic amino acid residues in proteins produced by cell-free synthesis from inexpensive 13C-labelled precursors

Akke M, Weininger U (2023) NMR studies of aromatic ring flips to probe conformational fluctuations in proteins. J Phys Chem B 127:591–599

Article  Google Scholar 

Apponyi MA, Ozawa K, Dixon NE, Otting G (2008) Cell-free protein synthesis for analysis by NMR spectroscopy. Methods Mol Biol 426:257–268

Article  Google Scholar 

Brylinski M (2018) Aromatic interactions at the ligand–protein interface: implications for the development of docking scoring functions. Chem Biol Drug Des 91:380–390

Article  Google Scholar 

Cai M, Huang Y, Sakaguchi K, Clore GM, Gronenborn AM, Craigie R (1998) An efficient and cost-effective isotope labeling protocol for proteins expressed in Escherichia coli. J Biomol NMR 11:97–102

Article  Google Scholar 

Cai M, Huang Y, Craigie R, Clore GM (2019) A simple protocol for expression of isotope-labeled proteins in Escherichia coli grown in shaker flasks at high cell density. J Biomol NMR 73:743–748

Article  Google Scholar 

Dreydoppel M, Lichtenecker RJ, Akke M, Weininger U (2021) ) 1H R1r relaxation dispersion experiments in aromatic side chains. J Biomol NMR 75:383–392

Article  Google Scholar 

Gell DA, Kwan AH, Mackay JP (2017) NMR spectroscopy in the analysis of protein-protein interactions. In: Webb GA (ed) Modern magnetic resonance. Springer International Publishing, Cham, Switzerland, pp 1–34

Google Scholar 

Gething MJH, Davidson BE, Dopheide TAA (1976) Chorismate mutase/prephenate dehydratase from Escherichia coli K12. 1. The effect of NaCl and its use in a new purification involving affinity chromatography on Sepharosyl-phenylalanine. Eur J Biochem 71:317–325

Article  Google Scholar 

Hudson GS, Howlett GJ, Davidson BE (1983) The binding of tyrosine and NAD+ to chorismate mutase/prephenate dehydrogenase from Escherichia coli K12 and the effects of these ligands on the activity and self-association of the enzyme. Analysis in terms of a model. J Biol Chem 258:3114–3120

Article  Google Scholar 

Jewett MC, Swartz JR (2004) Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol Bioeng 86:19–26

Article  Google Scholar 

Kainosho M, Güntert P (2009) SAIL – stereo-array isotope labeling. Quart Rev Biophys 42:247–300

Article  Google Scholar 

Kasinath V, Valentine KG, Wand AJ (2013) A 13C labeling strategy reveals a range of aromatic side chain motion in calmodulin. J Am Chem Soc 135:9560–9563

Article  Google Scholar 

Kurauskas V, Schanda P, Sounier R (2017) Methyl-specific isotope labeling strategies for NMR studies of membrane proteins. Methods Mol Biol 1635:109–123

Article  Google Scholar 

Lacabanne D, Meier BH, Böckmann A (2018) Selective labeling and unlabeling strategies in protein solid-state NMR spectroscopy. J Biomol NMR 71:141–150

Article  Google Scholar 

Lanzarotti E, Biekofsky RR, Estrin DA, Marti MA, Turjanski AG (2011) Aromatic-aromatic interactions in proteins: beyond the dimer. J Chem Inf Model 51:1623–1633

Article  Google Scholar 

Lichtenecker RJ (2014) Synthesis of aromatic 13C/2H-α-ketoacid precursors to be used in selective phenylalanine and tyrosine protein labelling. Org Biomol Chem 12:7551–7560

Article  Google Scholar 

Lichtenecker RJ, Weinhäupl K, Schmid W, Konrat R (2013) α-Ketoacids as precursors for phenylalanine and tyrosine labelling in cell-based protein overexpression. J Biomol NMR 57:327–331

Article  Google Scholar 

Linser R, Gelev V, Hagn F, Arthanari H, Hyberts SG, Wagner G (2014) Selective methyl labeling of eukaryotic membrane proteins using cell-free expression. J Am Chem Soc 136:11308–11310

Article  Google Scholar 

Loquet A, Lv G, Giller K, Becker S, Lange A (2011) 13C spin dilution for simplified and complete solid-state NMR resonance assignment of insoluble biological assemblies. J Am Chem Soc 133:4722–4725

Article  Google Scholar 

Lundström P, Teilum K, Carstensen T, Bezsonova I, Wiesner S, Hansen DF, Religa TL, Akke M, Kay LE (2007) Fractional 13C enrichment of isolated carbons using [1-13C]- or [2-13C]-glucose facilitates the accurate measurement of dynamics at backbone Cα and side-chain methyl positions in proteins. J Biomol NMR 38:199–212

Article  Google Scholar 

Makwana KM, Mahalakshmi R (2015) Implications of aromatic–aromatic interactions: from protein structures to peptide models. Prot Sci 24:1920–1933

Article  Google Scholar 

Milbradt AG, Arthanari H, Takeuchi K, Boeszoermenyi A, Hagn F, Wagner G (2015) Increased resolution of aromatic cross peaks using alternate 13C labeling and TROSY. J Biomol NMR 62:291–301

Article  Google Scholar 

Pervushin K, Riek R, Wider G, Wüthrich K (1998) Transverse relaxation-optimized spectroscopy (TROSY) for NMR studies of aromatic spin systems in 13C-labeled proteins. J Am Chem Soc 120:6394–6400

Article  Google Scholar 

Rasia RM, Brutscher B, Plevin MJ (2012) Selective isotopic unlabeling of proteins using metabolic precursors: application to NMR assignment of intrinsically disordered proteins. ChemBioChem 13:732–739

Article  Google Scholar 

Rowlinson B, Crublet E, Kerfah R, Plevin MJ (2022) Specific isotopic labelling and reverse labelling for protein NMR spectroscopy: using metabolic precursors in sample preparation. Biochem Soc Trans 50:1555–1567

Article  Google Scholar 

Schörghuber J, Geist L, Platzer G, Feichtinger M, Bisaccia M, Scheibelberger L, Weber F, Konrat R, Lichtenecker RJ (2018) Late metabolic precursors for selective aromatic residue labeling. J Biomol NMR 71:129–140

Article  Google Scholar 

Takeda M, Ono AM, Terauchi T, Miyano, Kainosho M (2010) Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination. J Biomol NMR 46:45–49

Article  Google Scholar 

Takeuchi K, Ng E, Malia TJ, Wagner G (2007) 1-13C amino acid selective labeling in a 2H/15 N background for NMR studies of large proteins. J Biomol NMR 38:89–98

Article  Google Scholar 

Teilum K, Brath U, Lundström P, Akke M (2006) Biosynthetic 13C labeling of aromatic side chains in proteins for NMR relaxation measurements. J Am Chem Soc 128:2506–2507

Article  Google Scholar 

Torizawa T, Shimizu M, Taoka M, Miyano H, Kainosho M (2004) Efficient production of isotopically labeled proteins by cell-free synthesis: a practical protocol. J Biomol NMR 30:311–325

Article  Google Scholar 

Torizawa T, Ono AM, Terauchi T, Kainosho M (2005) NMR assignment methods for the aromatic ring resonances of phenylalanine and tyrosine residues in proteins. J Am Chem Soc 127:12620–12626

Article  Google Scholar 

Turnbull J, Cleland WW, Morrison JF (1990) Chorismate mutase-prephenate dehydrogenase from Escherichia coli. 1. Kinetic characterization of the dehydrogenase reaction by use of alternative substrates. Biochemistry 29:10245–10254

Article  Google Scholar 

Van Raad D, Huber T (2021) In vitro protein synthesis in semipermeable artificial cells. ACS Synth Biol 10:1237–1244

Article  Google Scholar 

Van Raad D, Otting G, Huber T (2023) Cell-free synthesis of proteins with selectively 13C-labelled methyl groups from inexpensive precursors. Magn Reson, in press. https://doi.org/10.5194/mr-2023-3

Article  Google Scholar 

Verardi R, Traaseth NJ, Masterson LR, Vostrikov VV, Veglia G (2012) Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins. Adv Exp Med Biol 992:35–62

Article  Google Scholar 

Weininger U (2017) Site-selective 13C labeling of proteins using erythrose. J Biomol NMR 67:191–200

Article  Google Scholar 

Williams JK, Schmidt-Rohr K, Hong M (2015) Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly 13C-labeled proteins. Solid State Nucl Magn Reson 72:118–126

Article  Google Scholar 

Comments (0)

No login
gif