Connexin36 RNA Expression in the Cochlear Nucleus of the Echolocating Bat, Eptesicus fuscus

Bennett MV, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41(4):495–511. https://doi.org/10.1016/S0896-6273(04)00043-1

Article  CAS  PubMed  Google Scholar 

Connors BW (2017) Synchrony and so much more: diverse roles for electrical synapses in neural circuits. Dev Neurobiol 77(5):610–624. https://doi.org/10.1002/dneu.22493

Article  PubMed  PubMed Central  Google Scholar 

Pereda AE (2014) Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci 15(4):250–263. https://doi.org/10.1038/nrn3708

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galarreta M, Hestrin S (2001) Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292(5525):2295–2299. https://doi.org/10.1126/science.1061395

Article  CAS  PubMed  Google Scholar 

Joris PX, Smith PH, Yin TC (1998) Coincidence detection in the auditory system: 50 years after Jeffress. Neuron 21(6):1235–1238. https://doi.org/10.1016/S0896-6273(00)80643-1

Article  CAS  PubMed  Google Scholar 

Licklider JCR (1959) Three auditory theories. In: Koch S (ed) Psychology: a study of a science. McGraw-Hill, New York, pp 41–144

Google Scholar 

Simmons JA, Simmons AM (2011) Bats and frogs and animals in between: evidence for a common central timing mechanism to extract periodicity pitch. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(5):585–594. https://doi.org/10.1007/s00359-010-0607-4

Article  PubMed  Google Scholar 

Lyon RF (2017) Human and machine hearing. Cambridge University Press, Cambridge UK

Book  Google Scholar 

Ming C, Haro S, Simmons AM, Simmons JA (2021) A comprehensive computational model of animal biosonar signal processing. PLoS Comput Biol 17(2):e1008677. https://doi.org/10.1371/journal.pcbi.1008677

Rash JE, Staines WA, Yasumura T, Patel D, Furman CS, Stelmack GL, Nagy JI (2000) Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43. Proc Natl Acad Sci USA 97(13):7573–7578. https://doi.org/10.1073/pnas.97.13.7573

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rubio ME, Nagy JI (2015) Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: evidence for neurons forming purely electrical synapses and morphologically mixed synapses. Neurosci 303:604–629. https://doi.org/10.1016/j.neuroscience.2015.07.026

Article  CAS  Google Scholar 

Belluardo N, Mudo G, Trovato-Salinaro A, Le Gurun S, Charollais A, Serre-Beinier V, Amato G, Haefliger JA, Meda P, Condorelli DF (2000) Expression of connexin36 in the adult and developing rat brain. Brain Res 865(1):121–138. https://doi.org/10.1016/S0006-8993(00)02300-3

Article  CAS  PubMed  Google Scholar 

Condorelli DF, Parenti R, Spinella F, Trovato Salinaro A, Belluardo N, Cardile V, Cicirata F (1998) Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. Eur J Neurosci 10(3):1202–1208. https://doi.org/10.1046/j.1460-9568.1998.00163.x

Article  CAS  PubMed  Google Scholar 

Gómez-Nieto R, Rubio ME (2009) A bushy cell network in the rat ventral cochlear nucleus. J Comp Neurol 516(4):241–263. https://doi.org/10.1002/cne.22139

Article  PubMed  PubMed Central  Google Scholar 

Mugnaini E (1985) GABA neurons in the superficial layers of the rat dorsal cochlear nucleus: light and electron microscopic immunocytochemistry. J Comp Neurol 235(1):61–81. https://doi.org/10.1002/cne.902350106

Article  CAS  PubMed  Google Scholar 

Sotelo CT, Gentschev T, Zamora AJ (1976) Gap junctions in ventral cochlear nucleus of the rat. A possible new example of electrotonic junctions in the mammalian C.N.S. Neurosci 1(1):5–7. https://doi.org/10.1016/0306-4522(76)90041-5

Wouterlood FG, Mugnaini E, Osen KK, Dahl AL (1984) Stellate neurons in rat dorsal cochlear nucleus studies with combined Golgi impregnation and electron microscopy: synaptic connections and mutual coupling by gap junctions. J Neurocytol 13(4):639–664. https://doi.org/10.1007/BF01148083

Article  CAS  PubMed  Google Scholar 

Gómez-Nieto R, Rubio ME (2011) Ultrastructure, synaptic organization, and molecular components of bushy cell networks in the anteroventral cochlear nucleus of the rhesus monkey. Neurosci 179:188–207. https://doi.org/10.1016/j.neuroscience.2011.01.058

Article  CAS  Google Scholar 

Apostolides PF, Trussell LO (2013) Regulation of interneuron excitability by gap junction coupling with principal cells. Nat Neurosci 16(12):1764–1772. https://doi.org/10.1038/nn.3569

Article  CAS  PubMed  PubMed Central  Google Scholar 

Apostolides PF, Trussell LO (2014a) Control of interneuron firing by subthreshold synaptic potentials in principal cells of the dorsal cochlear nucleus. Neuron 83(2):324–330. https://doi.org/10.1016/j.neuron.2014.06.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Apostolides PF, Trussell LO (2014b) Superficial stellate cells of the dorsal cochlear nucleus. Front Neural Circuits 8:63. https://doi.org/10.3389/fncir.2014.00063

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yaeger DB, Trussell LO (2016) Auditory Golgi cells are interconnected predominantly by electrical synapses. J Neurophysiol 116(2):540–551. https://doi.org/10.1152/jn.01108.2015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cant NB (1992) The cochlear nucleus: neuronal types and their synaptic organization. In: DB Webster, AN Popper, RR Fay (eds), The Mammalian Auditory Pathway: Neuroanatomy. Springer Handbook of Auditory Research, vol 1. Springer, New York, pp 66–116. https://doi.org/10.1007/978-1-4612-4416-5_3

Rubio ME (2018) Microcircuits of the ventral cochlear nucleus. In: DL Oliver, NB Cant, RR Fay, AN Popper (eds), The mammalian auditory pathways: synaptic organization and microcircuits. Springer Handbook of Auditory Research, vol 65. Springer, Cham, pp 41–71. https://doi.org/10.1007/978-3-319-71798-2_3

Trussell LO, Oertel D (2018) Microcircuits of the dorsal cochlear nucleus. In: DL Oliver, NB Cant, RR Fay, AN Popper (eds), The mammalian auditory pathways: synaptic organization and microcircuits. Springer Handbook of Auditory Research, vol 65. Springer, Cham, pp 73–99. https://doi.org/10.1007/978-3-319-71798-2_4

Joris PX, Carney LH, Smith PH, Yin TC (1994) Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. J Neurophysiol 71(3):1022–1036. https://doi.org/10.1152/jn.1994.71.3.1022

Horowitz SS, Stamper SA, Simmons JA (2008) Neuronal connexin expression in the cochlear nucleus of big brown bats. Brain Res 1197:76–84. https://doi.org/10.1016/j.brainres.2007.12.048

Article  CAS  PubMed  Google Scholar 

Covey E, Casseday JH (1999) Timing in the auditory system of the bat. Ann Rev Physiol 61:457–476. https://doi.org/10.1146/annurev.physiol.61.1.457

Article  CAS  Google Scholar 

Luo J, Maciás S, Ness TV, Einevoll GT, Zhang K, Moss CF (2018) Neural timing of stimulus events with microsecond precision. PLOS Biol 16(10):e2006422. https://doi.org/10.1371/journal.pbio.2006422

Simmons JA (1993) Evidence for perception of fine echo delay and phase by the FM bat, Eptesicus fuscus. J Comp Physiol A 172:533–547. https://doi.org/10.1007/BF00213677

Article  CAS  PubMed  Google Scholar 

Simmons JA, Ferragamo MJ, Sanderson MI (2003) Echo delay versus spectral cues for temporal hyperacuity in the big brown bat, Eptesicus fuscus. J Comp Physiol Neuroethol Sens Neural Behav Physiol 189:693–702. https://doi.org/10.1007/s00359-003-0444-9

Article  CAS  Google Scholar 

Di Palma F, Alfoldi J, Johnson J, Berlin A, Gnerre S, MacCallum JDI, Young S, Walker BJ, Lindblad-Toh K (2012) The draft genome of Eptesicus fuscus. The Broad Institute Genome Assembly & Analysis Group, Computational R&D Group, and Sequencing Platform. https://www.ncbi.nlm.nih.gov/assembly/GCF_000308155.1/

Timothy M, Forlano PM (2019) A versatile macro-based neurohistological images analysis suite for ImageJ focused on automated and standardized user interaction and reproducible data output. J Neurosci Meth 324(108286). https://doi.org/10.1016/j.jneumeth.2019.04.009

Rasband WS (1997–2018) ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA. https://imagej.nih.gov/ij/, 1997–2018

Deans MR, Gibson JR, Sellitto C, Connors BW, Paul DL (2001) Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31(3):477–485. https://doi.org/10.1016/S0896-6273(01)00373-7

Article  CAS  PubMed  Google Scholar 

Covey E, Casseday JH (1995) The lower brainstem auditory pathways. In: AN Popper, RR Fay (eds), Hearing by bats. Springer Handbook of Auditory Research, vol 5. Springer, New York, pp 235–295. https://doi.org/10.1007/978-1-4612-2556-0_6

Hall JG (1969) The cochlea and the cochlear nuclei in the bat. Acta Otolaryngol 67(5):490–500. https://doi.org/10.3109/00016486909125476

Article  CAS  PubMed  Google Scholar 

Haplea S, Covey E, Casseday JH (1994) Frequency tuning and response latencies at three levels in the brainstem of the echolocating bat, Eptesicus fuscus. J Comp Physiol A Sens Neural Behav Physiol 174(6):671–683. https://doi.org/10.1007/BF00192716

Article  CAS  Google Scholar 

Rosenberger MH, Fremouw T, Casseday JH, Covey E (2003) Expression of the Kv1.1 ion channel subunit in the auditory brainstem of the big brown bat, Eptesicus fuscus. J Comp Neurol 462(1):101–120. https://doi.org/10.1002/cne.10713

Godfrey DA, Lee AC, Hamilton WD, Benjamin LC, Vishwanath S, Simo H, Godfrey LM, Mustapha AIAA, Heffner RS (2016) Volumes of cochlear nucleus regions in rodents. Hear Res 339:161–174. https://doi.org/10.1016/j.heares.2016.07.003

Article  PubMed  PubMed Central  Google Scholar 

Vater M (1982) Single unit responses in cochlear nucleus of horseshoe bats to sinusoidal frequency and amplitude modulated signals. J Comp Physiol 149:369–388. https://doi.org/10.1007/BF00619153

Article  Google Scholar 

Lauer AM, Connelly CJ, Graham H, Ryugo DK (2013) Morphological characterization of bushy cells and their inputs in the laboratory mouse (Mus musculus) anteroventral cochlear nucleus. PLoS ONE 8(8):e73308. https://doi.org/10.1371/journal.pone.0073308

Oertel D, Bal R, Gardner SM, Smith PH, Joris PX (2000) Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. Proc Natl Acad Sci USA 97:11773–11779. https://doi.org/10.1073/pnas.97.22.11773

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kemmer M, Vater M (1997) The distribution of GABA and glycine immunostaining in the cochlear nucleus of the mustached bat (Pteronotus parnellii). Cell Tissue Res 287:487–506. https://doi.org/10.1007/s004410050773

Article  CAS  PubMed  Google Scholar 

Rubio ME, Gudsnuk KA, Smith Y, Ryugo DK (2008) Revealing the molecular layer of the primate dorsal cochlear nucleus. Neurosci 154:99–113. https://doi.org/10.1016/j.neuroscience.2007.12.016

Article  CAS  Google Scholar 

Carter ME (2004) A stereotaxic brain atlas of the big brown bat. BatLab, University of Washington, Seattle WA, Eptesicus fuscus

Google Scholar 

Parenti R, Gulisano M, Zappala’ A, Cicirata F (2000) Expression of connexin36 mRNA in adult rodent brain. NeuroReport 11(7):1497–1502

Comments (0)

No login
gif