Acerbi, A. (2020). Cultural Evolution in the Digital Age. Oxford University Press.
Agbo-Ajala, O., Viriri, S., Oloko-Oba, M., Ekundayo, O., & Heymann, R. (2022). Apparent age prediction from faces: A survey of modern approaches. Frontiers in Big Data, 5, 1025806. https://doi.org/10.3389/fdata.2022.1025806
Altay, S., Nielsen, R. K., & Fletcher, R. (2022). Quantifying the “infodemic”: People turned to trustworthy news outlets during the 2020 coronavirus pandemic. Journal of Quantitative Description: Digital Media, 2. https://doi.org/10.51685/jqd.2022.020
Arbieu, U., Helsper, K., Dadvar, M., Mueller, T., & Niamir, A. (2021). Natural Language Processing as a tool to evaluate emotions in conservation conflicts. Biological Conservation, 256, 109030. https://doi.org/10.1016/j.biocon.2021.109030
Archibald, C. L., & Butt, N. (2018). Using Google search data to inform global climate change adaptation policy. Climatic Change, 150(3), 447–456. https://doi.org/10.1007/s10584-018-2289-9
Azucar, D., Marengo, D., & Settanni, M. (2018). Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis. Personality and Individual Differences, 124, 150–159. https://doi.org/10.1016/j.paid.2017.12.018
Bae, Y. J., Shim, M., & Lee, W. H. (2021). Schizophrenia detection using machine learning approach from social media content. Sensors, 21(17), Art. 17. https://doi.org/10.3390/s21175924
Bail, C. A. (2014). The cultural environment: Measuring culture with big data. Theory and Society, 43(3), 465–482. https://doi.org/10.1007/s11186-014-9216-5
Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J. J., & Vespignani, A. (2009). Multiscale mobility networks and the spatial spreading of infectious diseases. Proceedings of the National Academy of Sciences, 106(51), Art. 51. https://doi.org/10.1073/pnas.0906910106
Bentley, R. A., O’Brien, M. J., & Brock, W. A. (2014). Mapping collective behavior in the big-data era. Behavioral and Brain Sciences, 37(1), 63–76. https://doi.org/10.1017/S0140525X13000289
Bergström, M. (2018). De quoi l’écart d’âge est-il le nombre? L’apport des big data à l’étude de la différence d’âge au sein des couples. Revue Française De Sociologie, 59(3), 395–422. https://doi.org/10.3917/rfs.593.0395
Berti, E., Monsarrat, S., Munk, M., Jarvie, S., & Svenning, J.-C. (2020). Body size is a good proxy for vertebrate charisma. Biological Conservation, 251, 108790. https://doi.org/10.1016/j.biocon.2020.108790
Bhatt, P., & Pickering, C. M. (2021). Public perceptions about Nepalese National Parks: A global Twitter discourse analysis. Society & Natural Resources, 34(6), 685–702. https://doi.org/10.1080/08941920.2021.1876193
Blackwell, D., Leaman, C., Tramposch, R., Osborne, C., & Liss, M. (2017). Extraversion, neuroticism, attachment style and fear of missing out as predictors of social media use and addiction. Personality and Individual Differences, 116, 69–72. https://doi.org/10.1016/j.paid.2017.04.039
Bochkarev, V., Solovyev, V., & Wichmann, S. (2014). Universals versus historical contingencies in lexical evolution. Journal of The Royal Society Interface, 11(101), Art. 101. https://doi.org/10.1098/rsif.2014.0841
Bovet, A., & Makse, H. A. (2019). Influence of fake news in Twitter during the 2016 US presidential election. Nature Communications, 10(1), 7. https://doi.org/10.1038/s41467-018-07761-2
Article PubMed PubMed Central Google Scholar
Broesch T., Crittenden, A.N., Beheim, B.A., Blackwell, A.D., Bunce, J.A., Colleran, H., Hagel, K., Kline, M., McElreath, R., Nelson, R.G., Pisor, A.C., Prall, S., Pretelli, I., Purzycki, B., Quinn, E.A., Ross, C., Scelza, B., Starkweather, K., Stieglitz, J., & Mulder, M.B. (2020). Navigating cross-cultural research: Methodological and ethical considerations. Proceedings of the Royal Society B.287202012452020124. https://doi.org/10.1098/rspb.2020.1245
Broniatowski, D. A., Paul, M. J., & Dredze, M. (2013). National and local influenza surveillance through Twitter: An analysis of the 2012-2013 influenza epidemic. PLoS One, 8(12), e83672. https://doi.org/10.1371/journal.pone.0083672
Cantarella, M., Fraccaroli, N., & Volpe, R. (2023). Does fake news affect voting behaviour? Research Policy, 52(1), 104628. https://doi.org/10.1016/j.respol.2022.104628
Caruana-Galizia, P. (2015). Politics and the German language: Testing Orwell’s hypothesis using the Google N-Gram corpus. Digital Scholarship in the Humanities, 31(3), Art. 3. https://doi.org/10.1093/llc/fqv011
Casero-Ripollés, A. (2021). Influencers in the political conversation on Twitter: Identifying digital authority with big data. Sustainability, 13(5), 2851. https://doi.org/10.3390/su13052851
Caton, S., Hall, M., & Weinhardt, C. (2015). How do politicians use Facebook? An applied social observatory. Big Data & Society, 2(2), 2053951715612822. https://doi.org/10.1177/2053951715612822
Celli, F., Bruni, E., & Lepri, B. (2014). Automatic personality and interaction style recognition from Facebook profile pictures. In Proceedings of the 22nd ACM International Conference on Multimedia. https://doi.org/10.1145/2647868.2654977
Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), Art. 2. https://doi.org/10.1007/s11036-013-0489-0
Chiong, R., Budhi, G. S., Dhakal, S., & Chiong, F. (2021). A textual-based featuring approach for depression detection using machine learning classifiers and social media texts. Computers in Biology and Medicine, 135, 104499. https://doi.org/10.1016/j.compbiomed.2021.104499
CICES. (2023). Common International Classification of Ecosystem Services. https://cices.eu/
Cohen, G. L. (2003). Party over policy: The dominating impact of group influence on political beliefs. Journal of Personality and Social Psychology, 85(5), 808–822. https://doi.org/10.1037/0022-3514.85.5.808
Cooper, M. W., Di Minin, E., Hausmann, A., Qin, S., Schwartz, A. J., & Correia, R. A. (2019). Developing a global indicator for Aichi Target 1 by merging online data sources to measure biodiversity awareness and engagement. Biological Conservation, 230, 29–36. https://doi.org/10.1016/j.biocon.2018.12.004
Correia, R. A., Jepson, P., Malhado, A. C. M., & Ladle, R. J. (2017). Internet scientific name frequency as an indicator of cultural salience of biodiversity. Ecological Indicators, 78, 549–555. https://doi.org/10.1016/j.ecolind.2017.03.052
Correia, R. A., Jepson, P. R., Malhado, A. C. M., & Ladle, R. J. (2016). Familiarity breeds content: Assessing bird species popularity with culturomics. PeerJ, 4, e1728. https://doi.org/10.7717/peerj.1728
Correia, R. A., Ladle, R., Jarić, I., Malhado, A. C. M., Mittermeier, J. C., Roll, U., Soriano-Redondo, A., Veríssimo, D., Fink, C., Hausmann, A., Guedes-Santos, J., Vardi, R., & Di Minin, E. (2021). Digital data sources and methods for conservation culturomics. Conservation Biology, 35(2), Art. 2. https://doi.org/10.1111/cobi.13706
Di Minin, E., Fraser, I., Slotow, R., & MacMillan, D. C. (2013). Understanding heterogeneous preference of tourists for big game species: Implications for conservation and management. Animal Conservation, 16(3), 249–258. https://doi.org/10.1111/j.1469-1795.2012.00595.x
Di Minin, E., Tenkanen, H., & Toivonen, T. (2015). Prospects and challenges for social media data in conservation science. Frontiers in Environmental Science, 3. https://www.frontiersin.org/articles/https://doi.org/10.3389/fenvs.2015.00063
Ding, Q., & Luo, X. (2022). People with high perceived infectability are more likely to spread rumors in the context of COVID-19: A behavioral immune system perspective. International Journal of Environmental Research and Public Health, 20(1), 703. https://doi.org/10.3390/ijerph20010703
Article PubMed PubMed Central Google Scholar
Dodds, P. S., Harris, K. D., Kloumann, I. M., Bliss, C. A., & Danforth, C. M. (2011). Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter. PLoS One, 6(12), e26752. https://doi.org/10.1371/journal.pone.0026752
Dönmez, İ. (2020). Analyzing five conscious and unconscious behaviors using Google n-gram database generated from millions of books. In 2020 5th International Conference on Computer Science and Engineering (UBMK) (pp. 19–24). Presented at the 2020 5th International Conference on Computer Science and Engineering (UBMK). https://doi.org/10.1109/UBMK50275.2020.9219540
El Bizri, H. R., Morcatty, T. Q., Lima, J. J. S., & Valsecchi, J. (2015). The thrill of the chase: uncovering illegal sport hunting in Brazil through YouTube posts. Ecology and Society, 20(3). https://doi.org/10.5751/es-07882-200330
Fernández-Bellon, D., & Kane, A. (2020). Natural history films raise species awareness—A big data approach. Conservation Letters, 13(1), e12678. https://doi.org/10.1111/conl.12678
Francis, F. T., Howard, B. R., Berchtold, A. E., Branch, T. A., Chaves, L. C. T., Dunic, J. C., Favaro, B., Jeffrey, K. M., Malpica-Cruz, L., Maslowski, N., Schultz, J. A., Smith, N. S., & Côté, I. M. (2019). Shifting headlines? Size trends of newsworthy fishes. PeerJ, 7, e6395. https://doi.org/10.7717/peerj.6395
Gao, J., Hu, J., Mao, X., & Perc, M. (2012). Culturomics meets random fractal theory: Insights into long-range correlations of social and natural phenomena over the past two centuries. Journal of The Royal Society Interface, 9(73), Art. 73. https://doi.org/10.1098/rsif.2011.0846
Gollwitzer, A., Martel, C., Brady, W. J., Pärnamets, P., Freedman, I. G., Knowles, E. D., & Van Bavel, J. J. (2020). Partisan differences in physical distancing are linked to health outcomes during the COVID-19 pandemic. Nature Human Behaviour, 4(11), 1186–1197. https://doi.org/10.1038/s41562-020-00977-7
González, M. C., Hidalgo, C. A., & Barabási, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), Art. 7196. https://doi.org/10.1038/nature06958
Gosling, S. D., Sandy, C. J., John, O. P., & Potter, J. (2010). Wired but not WEIRD: The promise of the Internet in reaching more diverse samples. Behavioral and Brain Sciences, 33(2–3), Art. 2–3. https://doi.org/10.1017/s0140525x10000300
Griffin, G. P., Mulhall, M., Simek, C., & Riggs, W. W. (2020). Mitigating bias in big data for transportation. Journal of Big Data Analytics in Transportation, 2(1), 49–59. https://doi.org/10.1007/s42421-020-00013-0
Hale, B. W. (2018). Mapping potential environmental impacts from tourists using data from social media: A case study in the Westfjords of Iceland. Environmental Management, 62(3), 446–457. https://doi.org/10.1007/s00267-018-1056-z
Hargittai, E. (2018). Potential Biases in Big Data: Omitted Voices on social media. Social Science Computer Review, 38(1), Art. 1. https://doi.org/10.1177/0894439318788322
Hassan Zadeh, A., Zolbanin, H. M., Sharda, R., & Delen, D. (2019). Social media for nowcasting flu activity: Spatio-temporal big data analysis. Information Systems Frontiers, 21(4), Art. 4. https://doi.org/10.1007/s10796-018-9893-0
Hausmann, A., Toivonen, T., Slotow, R., Tenkanen, H., Moilanen, A., Heikinheimo, V., & Di Minin, E. (2017). Social media data can be used to understand tourists’ preferences for nature-based experiences in protected areas. Conservation Letters, 11(1), e12343. https://doi.org/10.1111/conl.12343
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? The Behavioral and Brain Sciences, 33(2–3), 61–83; discussion 83–135. https://doi.org/10.1017/S0140525X0999152X
Heras-Pedrosa, C., Sánchez-Núñez, P., & Peláez, J. I. (2020). Sentiment analysis and emotion understanding during the COVID-19 pandemic in Spain and its impact on digital ecosystems. International Journal of Environmental Research and Public Health, 17(15), Art. 15. https://doi.org/10.3390/ijerph17155542
ITU. (2023). ITU-D ICT Statistics. https://www.itu.int/itu-d/sites/statistics/
Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), Art. 3. https://doi.org/10.1007/s12525-021-00475-2
Jarić, I., Bellard, C., Correia, R. A., Courchamp, F., Douda, K., Essl, F., Jeschke, J. M., Kalinkat, G., Kalous, L., Lennox, R. J., Novoa, A., Proulx, R., Pyšek, P., Soriano-Redondo, A., Souza, A. T., Vardi, R., Veríssimo, D., & Roll, U. (2021). Invasion culturomics and iEcology. Conservation Biology, 35(2), 447–451. https://doi.org/10.1111/cobi.13707
Jarić, I., Roll, U., Arlinghaus, R., Belmaker, J., Chen, Y., China, V., Douda, K., Essl, F., Jähnig, S. C., Jeschke, J. M., Kalinkat, G., Kalous, L., Ladle, R., Lennox, R. J., Rosa, R., Sbragaglia, V., Sherren, K., Šmejkal, M., Soriano-Redondo, A., … Correia, R. A. (2020). Expanding conservation culturomics and iEcology from terrestrial to aquatic realms. PLOS Biology, 18(10), Art. 10. https://doi.org/10.1371/journal.pbio.3000935
Jost, J. T., Nam, H. H., Amodio, D. M., & Van Bavel, J. J. (2014). Political neuroscience: The beginning of a beautiful friendship. Political Psychology, 35, 3–42. https://doi.org/10.1111/pops.12162
Juola, P. (2013). Using the Google N-Gram corpus to measure cultural complexity. Literary and Linguistic Computing, 28(4), Art. 4. https://doi.org/10.1093/llc/fqt017
Kesebir, P., & Kesebir, S. (2012). The cultural salience of moral character and virtue declined in twentieth century America. The Journal of Positive Psychology, 7(6), 471–480. https://doi.org/10.1080/17439760.2012.715182
Koplenig, A. (2017). Why the quantitative analysis of diachronic corpora that does not consider the temporal aspect of time-series can lead to wrong conclusions. Digital Scholarship in the Humanities, fqv030. https://doi.org/10.1093/llc/fqv030
Kroetz, A. M., Brame, A. B., Bernanke, M., McDavitt, M. T., & Wiley, T. R. (2021). Tracking public interest and perceptions about smalltooth sawfish conservation in the USA using Instagram. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(10), Art. 10. https://doi.org/10.1002/aqc.3680
Ladle, R., Jepson, P., Correia, R., & Malhado, A. (2019). A culturomics approach to quantifying the salience of species on the global internet. People and Nature, 1, 1–9. https://doi.org/10.1002/pan3.10053
Ladle, R. J., Correia, R. A., Do, Y., Joo, G.-J., Malhado, A. C., Proulx, R., Roberge, J.-M., & Jepson, P. (2016). Conservation culturomics. Frontiers in Ecology and the Environment, 14(5), 269–275. https://doi.org/10.1002/fee.1260
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), Art. 7553. https://doi.org/10.1038/nature14539
Leetaru, K. (2011). Culturomics 2.0: Forecasting large-scale human behavior using global news media tone in time and space. First Monday. https://doi.org/10.5210/fm.v16i9.3663
Li, W., Li, G., Xin, C., Wang, Y., & Yang, S. (2020). Challenges in the practice of sexual medicine in the time of COVID-19 in China. The Journal of Sexual Medicine, 17(7), 1225–1228. https://doi.org/10.1016/j.jsxm.2020.04.380
Article PubMed PubMed Central Google Scholar
Lin, Y., Michel, J.-B., Aiden Lieberman, E., Orwant, J., Brockman, W., & Petrov, S. (2012). Syntactic annotations for the Google Books NGram Corpus. Proceedings of the ACL 2012 System Demonstrations, 169–174. https://aclanthology.org/P12-3029
Liu, X. (2019). A big data approach to examining social bots on Twitter. Journal of Services Marketing, 33(4), 369–379. https://doi.org/10.1108/jsm-02-2018-0049
Luoto, S., & Varella, M. A. C. (2021). Pandemic leadership: Sex differences and their evolutionary–developmental origins. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2021.633862
Article PubMed PubMed Central Google Scholar
Mackey, T. K., Li, J., Purushothaman, V., Nali, M., Shah, N., Bardier, C., et al. (2020). Big data, natural language processing, and deep learning to detect and characterize illicit COVID-19 product sales: Infoveillance study on Twitter and Instagram. JMIR Public Health and Surveillance, 6(3), e20794. https://doi.org/10.2196/20794
Marr, B. (2016). Big data in practice: How 45 successful companies used big data analytics to deliver extraordinary results. John Wiley & Sons.
Mesoudi, A. (2011). Cultural evolution: How Darwinian theory can explain human culture and synthesize the social sciences. University of Chicago Press.
Mestyán, M., Yasseri, T., & Kertész, J. (2013). Early prediction of movie box office success based on Wikipedia activity big data. PLoS One, 8(8), e71226. https://doi.org/10.1371/journal.pone.0071226
Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., The Google Books Team, Pickett, J. P., Hoiberg, D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak, M. A., & Aiden, E. L. (2011). Quantitative analysis of culture using millions of digitized books. Science, 331(6014), Art. 6014. https://doi.org/10.1126/science.1199644
Mislove, A., Lehmann, S., Ahn, Y.-Y., Onnela, J.-P., & Rosenquist, J. (2021). Understanding the demographics of Twitter users. Proceedings of the International AAAI Conference on Web and Social Media, 5(1), 554–557. https://doi.org/10.1609/icwsm.v5i1.14168
Mora-Rivera, J., & García-Mora, F. (2021). Internet access and poverty reduction: Evidence from rural and urban Mexico. Telecommunications Policy, 45(2), 102076. https://doi.org/10.1016/j.telpol.2020.102076
Muthukrishna, M., Bell, A. V., Henrich, J., Curtin, C. M., Gedranovich, A., McInerney, J., & Thue, B. (2020). Beyond Western, educated, industrial, rich, and democratic (WEIRD) psychology: Measuring and mapping scales of cultural and psychological distance. Psychological Science, 31(6), 678–701. https://doi.org/10.1177/0956797620916782
Comments (0)